Accès libre

Application of the thermoporoelasticity model in numerical modelling of underground coal gasification influence on the surrounding medium

À propos de cet article

Citez

Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173(January), 239–246. https://doi.org/10.1016/j.fuel.2016.01.019 Burchart-KorolD. KrawczykP. Czaplicka-KolarzK. SmolińskiA. 2016 Eco-efficiency of underground coal gasification (UCG) for electricity production Fuel 173 January 239 246 https://doi.org/10.1016/j.fuel.2016.01.019 10.1016/j.fuel.2016.01.019 Search in Google Scholar

Meeting, A., Engineers, C., Francisco, S. (1984). Commercial project planned for underground coal gasification. Chemical and Engineering News, 62(51), 25–27. https://doi.org/10.1021/cen-v062n051.p025 MeetingA. EngineersC. FranciscoS. 1984 Commercial project planned for underground coal gasification Chemical and Engineering News 62 51 25 27 https://doi.org/10.1021/cen-v062n051.p025 10.1021/cen-v062n051.p025 Search in Google Scholar

Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865–7875. https://doi.org/10.1021/ie801569r ShafirovichE. VarmaA. 2009 Underground coal gasification: A brief review of current status Industrial and Engineering Chemistry Research 48 17 7865 7875 https://doi.org/10.1021/ie801569r 10.1021/ie801569r Search in Google Scholar

Wiatowski, M., Stańczyk, K., Świadrowski, J., Kapusta, K., Cybulski, K., Krause, E., … Smoliński, A. (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “barbara.” Fuel, 99, 170–179. https://doi.org/10.1016/j.fuel.2012.04.017 WiatowskiM. StańczykK. ŚwiadrowskiJ. KapustaK. CybulskiK. KrauseE. SmolińskiA. 2012 Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “barbara.” Fuel 99 170 179 https://doi.org/10.1016/j.fuel.2012.04.017 10.1016/j.fuel.2012.04.017 Search in Google Scholar

Mocek, P., Pieszczek, M., Świadrowski, J., Kapusta, K., Wiatowski, M., Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy, 111, 313–321. https://doi.org/10.1016/j.energy.2016.05.087 MocekP. PieszczekM. ŚwiadrowskiJ. KapustaK. WiatowskiM. StańczykK. 2016 Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland Energy 111 313 321 https://doi.org/10.1016/j.energy.2016.05.087 10.1016/j.energy.2016.05.087 Search in Google Scholar

Friedmann, J. (2007). Fire in the Hole. Lawrence Livermore National Laboratory Science and Technology Rewiev, 4, 12–18. FriedmannJ. 2007 Fire in the Hole Lawrence Livermore National Laboratory Science and Technology Rewiev 4 12 18 Search in Google Scholar

Bhutto, A. W., Bazmi, A. A., Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189–214. https://doi.org/10.1016/j.pecs.2012.09.004 BhuttoA. W. BazmiA. A. ZahediG. 2013 Underground coal gasification: From fundamentals to applications Progress in Energy and Combustion Science 39 1 189 214 https://doi.org/10.1016/j.pecs.2012.09.004 10.1016/j.pecs.2012.09.004 Search in Google Scholar

Kostúr, K., Laciak, M., Durdan, M. (2018). Some influences of Underground Coal Gasification on the environment. Sustainability (Switzerland). https://doi.org/10.3390/su10051512 KostúrK. LaciakM. DurdanM. 2018 Some influences of Underground Coal Gasification on the environment Sustainability (Switzerland) https://doi.org/10.3390/su10051512 10.3390/su10051512 Search in Google Scholar

Blinderman, M. S., Blinderman, A., Taskaev, A. (2017). What makes a UCG technology ready for commercial application? Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00012-8 BlindermanM. S. BlindermanA. TaskaevA. 2017 What makes a UCG technology ready for commercial application? Underground Coal Gasification and Combustion Elsevier Ltd https://doi.org/10.1016/B978-0-08-100313-8.00012-8 10.1016/B978-0-08-100313-8.00012-8 Search in Google Scholar

Yang, L. (2005). Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification. Numerical Heat Transfer; Part A: Applications, 48(6), 585–606. https://doi.org/10.1080/10407780490508115 YangL. 2005 Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification Numerical Heat Transfer; Part A: Applications 48 6 585 606 https://doi.org/10.1080/10407780490508115 10.1080/10407780490508115 Search in Google Scholar

Otto, C., Kempka, T. (2015). Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes. Energies. https://doi.org/10.3390/en8065800 OttoC. KempkaT. 2015 Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes Energies https://doi.org/10.3390/en8065800 10.3390/en8065800 Search in Google Scholar

Li, H. zhan, Guo, G. li, Zha, J. feng, Yuan, Y. fei, Zhao, B. chen. (2016). Research on the surface movement rules and prediction method of underground coal gasification. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-015-0809-7 LiH. zhan GuoG. li ZhaJ. feng YuanY. fei ZhaoB. chen 2016 Research on the surface movement rules and prediction method of underground coal gasification Bulletin of Engineering Geology and the Environment https://doi.org/10.1007/s10064-015-0809-7 10.1007/s10064-015-0809-7 Search in Google Scholar

Akbarzadeh Kasani, H., Chalaturnyk, R. J. (2017). Coupled reservoir and geomechanical simulation for a deep underground coal gasification project. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2016.12.002 Akbarzadeh KasaniH. ChalaturnykR. J. 2017 Coupled reservoir and geomechanical simulation for a deep underground coal gasification project Journal of Natural Gas Science and Engineering https://doi.org/10.1016/j.jngse.2016.12.002 10.1016/j.jngse.2016.12.002 Search in Google Scholar

Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1–16. https://doi.org/10.4028/www.scientific.net/SSP.277.1 PivnyakG. DychkovskyiR. BobyliovO. CabanaE. C. SmolińskiA. 2018 Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification Solid State Phenomena 277 1 16 https://doi.org/10.4028/www.scientific.net/SSP.277.1 10.4028/www.scientific.net/SSP.277.1 Search in Google Scholar

Uciechowska-grakowicz, A. (2018). Termokonsolidacja ośrodka porowatego z uwzględnieniem występowania fazy gazowej. Politechnika Wrocławska. Uciechowska-grakowiczA. 2018 Termokonsolidacja ośrodka porowatego z uwzględnieniem występowania fazy gazowej Politechnika Wrocławska Search in Google Scholar

Strzelecki, T., Bartlewska-Urban, M., Kaźmierczak, A., Overchenko, L., Strzelecki, M., Uciechowska-Grakowicz, A. (2018). Mechanika ośrodków porowatych. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne. StrzeleckiT. Bartlewska-UrbanM. KaźmierczakA. OverchenkoL. StrzeleckiM. Uciechowska-GrakowiczA. 2018 Mechanika ośrodków porowatych Wrocław Dolnośląskie Wydawnictwo Edukacyjne Search in Google Scholar

Biot, M. A. (1941). Reprinted Series General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886 BiotM. A. 1941 Reprinted Series General Theory of Three-Dimensional Consolidation Journal of Applied Physics 12 2 155 164 https://doi.org/10.1063/1.1712886 10.1063/1.1712886 Search in Google Scholar

Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956 BiotM. A. 1955 Theory of elasticity and consolidation for a porous anisotropic solid Journal of Applied Physics 26 2 182 185 https://doi.org/10.1063/1.1721956 10.1063/1.1721956 Search in Google Scholar

Ulm, F.-J., Constantinides, G., Heukamp, F. H. (2004). Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures. https://doi.org/10.1007/BF02481626 UlmF.-J. ConstantinidesG. HeukampF. H. 2004 Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties Materials and Structures https://doi.org/10.1007/BF02481626 10.1007/BF02481626 Search in Google Scholar

Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A. R., Moulding, D. A., Thrasher, A. J., … Charras, G. T. (2013). The cytoplasm of living cells behaves as a poroelastic material. Nature Materials. https://doi.org/10.1038/nmat3517 MoeendarbaryE. ValonL. FritzscheM. HarrisA. R. MouldingD. A. ThrasherA. J. CharrasG. T. 2013 The cytoplasm of living cells behaves as a poroelastic material Nature Materials https://doi.org/10.1038/nmat3517 10.1038/nmat3517392587823291707 Search in Google Scholar

Berger, L., Bordas, R., Burrowes, K., Grau, V., Tavener, S., Kay, D. (2016). A poroelastic model coupled to a fluid network with applications in lung modelling. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.2731 BergerL. BordasR. BurrowesK. GrauV. TavenerS. KayD. 2016 A poroelastic model coupled to a fluid network with applications in lung modelling International Journal for Numerical Methods in Biomedical Engineering https://doi.org/10.1002/cnm.2731 10.1002/cnm.273126100614 Search in Google Scholar

Coussy, O. (2007). Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.613 CoussyO. 2007 Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept International Journal for Numerical and Analytical Methods in Geomechanics https://doi.org/10.1002/nag.613 10.1002/nag.613 Search in Google Scholar

Coussy, O. (2010). Mechanics and Physics of Porous Solids. Mechanics and Physics of Porous Solids. https://doi.org/10.1002/9780470710388 CoussyO. 2010 Mechanics and Physics of Porous Solids Mechanics and Physics of Porous Solids https://doi.org/10.1002/9780470710388 10.1002/9780470710388 Search in Google Scholar

Derski, W. (1975). Zarys Mechaniki Ośrodków Ciągłych. PWN Warszawa. DerskiW. 1975 Zarys Mechaniki Ośrodków Ciągłych PWN Warszawa Search in Google Scholar

Strzelecki, T., Kostecki, S., Żak, S. (2008). Modelowanie przepływów przez ośrodki porowate. Wrocław: DWE. StrzeleckiT. KosteckiS. ŻakS. 2008 Modelowanie przepływów przez ośrodki porowate Wrocław DWE Search in Google Scholar

Coussy, O. (2004). Poromechanics. John Wiley & Sons, Ltd. CoussyO. 2004 Poromechanics John Wiley & Sons, Ltd Search in Google Scholar

Gawin, D., Baggio, P., Schrefler, B. A. (1995). Coupled heat, water and gas flow in deformable porous media. International Journal for Numerical Methods in Fluids, 20(8–9), 969–987. https://doi.org/10.1002/fld.1650200817 GawinD. BaggioP. SchreflerB. A. 1995 Coupled heat, water and gas flow in deformable porous media International Journal for Numerical Methods in Fluids 20 8–9 969 987 https://doi.org/10.1002/fld.1650200817 10.1002/fld.1650200817 Search in Google Scholar

Bartlewska-Urban, M., Strzelecki, T. (2014). Numerical Calculation of Deformation of Three Dimensional Sample in Triaxial Apparatus Under External Load and Temperature Field. Studia Geotechnica et Mechanica, 35(1), 27–39. https://doi.org/10.2478/sgem-2013-0003 Bartlewska-UrbanM. StrzeleckiT. 2014 Numerical Calculation of Deformation of Three Dimensional Sample in Triaxial Apparatus Under External Load and Temperature Field Studia Geotechnica et Mechanica 35 1 27 39 https://doi.org/10.2478/sgem-2013-0003 10.2478/sgem-2013-0003 Search in Google Scholar

Strzelecki, M. (2016). Model termo-filtracji w obszarze oddziaływania generatora zgazowania węgla. StrzeleckiM. 2016 Model termo-filtracji w obszarze oddziaływania generatora zgazowania węgla Search in Google Scholar

Liu, J., Liang, X., Xue, Y., Yao, K., Fu, Y. (2020). Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery. Applied Thermal Engineering, 178, 115554. https://doi.org/10.1016/j.applthermaleng.2020.115554 LiuJ. LiangX. XueY. YaoK. FuY. 2020 Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery Applied Thermal Engineering 178 115554 https://doi.org/10.1016/j.applthermaleng.2020.115554 10.1016/j.applthermaleng.2020.115554 Search in Google Scholar

Nowacki, W. (1975). Teoria sprężystości. PWN Warszawa. NowackiW. 1975 Teoria sprężystości PWN Warszawa Search in Google Scholar

Suárez-arriaga, M. C. (2010). Thermo-poroelasticity in geothermics, formulated in four dimensions La termoporoelasticidad en geotermia, definida en cuatro dimensiones, 23(2), 41–50. Suárez-arriagaM. C. 2010 Thermo-poroelasticity in geothermics, formulated in four dimensions La termoporoelasticidad en geotermia, definida en cuatro dimensiones 23 2 41 50 Search in Google Scholar

Tran, D., Settari, A., Nghiem, L. (2004). New Iterative Coupling Between a Reservoir Simulator and a Geomechanics Module. SPE Journal. https://doi.org/10.2118/88989-PA TranD. SettariA. NghiemL. 2004 New Iterative Coupling Between a Reservoir Simulator and a Geomechanics Module SPE Journal https://doi.org/10.2118/88989-PA 10.2118/78192-MS Search in Google Scholar

Bary, B., De Morais, M. V. G., Poyet, S., Durand, S. (2012). Simulations of the thermo-hydro-mechanical behaviour of an annular reinforced concrete structure heated up to 200°C. Engineering Structures, 36, 302–315. https://doi.org/10.1016/j.engstruct.2011.12.007 BaryB. De MoraisM. V. G. PoyetS. DurandS. 2012 Simulations of the thermo-hydro-mechanical behaviour of an annular reinforced concrete structure heated up to 200°C Engineering Structures 36 302 315 https://doi.org/10.1016/j.engstruct.2011.12.007 10.1016/j.engstruct.2011.12.007 Search in Google Scholar

Bartlewska-Urban, M., Zombroń, M., Strzelecki, T. (2016). Numerical analysis of road pavement thermal deformability, based on biot viscoelastic model of porous medium. Studia Geotechnica et Mechanica, 38(1), 15–22. https://doi.org/10.1515/sgem-2016-0002 Bartlewska-UrbanM. ZombrońM. StrzeleckiT. 2016 Numerical analysis of road pavement thermal deformability, based on biot viscoelastic model of porous medium Studia Geotechnica et Mechanica 38 1 15 22 https://doi.org/10.1515/sgem-2016-0002 10.1515/sgem-2016-0002 Search in Google Scholar

Lecampion, B. (2013). A macroscopic poromechanical model of cement hydration. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2013.768554 LecampionB. 2013 A macroscopic poromechanical model of cement hydration European Journal of Environmental and Civil Engineering https://doi.org/10.1080/19648189.2013.768554 10.1080/19648189.2013.768554 Search in Google Scholar

Néron, D., Dureisseix, D. (2008). A computational strategy for thermo-poroelastic structures with a time-space interface coupling. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.2283 NéronD. DureisseixD. 2008 A computational strategy for thermo-poroelastic structures with a time-space interface coupling International Journal for Numerical Methods in Engineering https://doi.org/10.1002/nme.2283 10.1002/nme.2283 Search in Google Scholar

Rosen, M. A., Reddy, B. V., Self, S. J. (2017). Underground coal gasification (UCG) modeling and analysis. Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00011-6 RosenM. A. ReddyB. V. SelfS. J. 2017 Underground coal gasification (UCG) modeling and analysis Underground Coal Gasification and Combustion Elsevier Ltd https://doi.org/10.1016/B978-0-08-100313-8.00011-6 10.1016/B978-0-08-100313-8.00011-6 Search in Google Scholar

Biot, M. A. (1956). Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. The Journal of the Acoustical Society of America. https://doi.org/10.1063/1.1721956 BiotM. A. 1956 Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range The Journal of the Acoustical Society of America https://doi.org/10.1063/1.1721956 10.1121/1.1908239 Search in Google Scholar

Xue, Y., Teng, T., Dang, F., Ma, Z., Wang, S., Xue, H. (2020). Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model. International Journal of Hydrogen Energy, 45(39), 20240–20249. https://doi.org/10.1016/j.ijhydene.2019.11.146 XueY. TengT. DangF. MaZ. WangS. XueH. 2020 Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model International Journal of Hydrogen Energy 45 39 20240 20249 https://doi.org/10.1016/j.ijhydene.2019.11.146 10.1016/j.ijhydene.2019.11.146 Search in Google Scholar

Uciechowska-Grakowicz, A., Strzelecki, T. (2017). Non-Isothermal Constitutive Relations and Heat Transfer Equations of a Two-Phase Medium. Studia Geotechnica et Mechanica, 39(3), 67–78. https://doi.org/10.1515/sgem-2017-0031 Uciechowska-GrakowiczA. StrzeleckiT. 2017 Non-Isothermal Constitutive Relations and Heat Transfer Equations of a Two-Phase Medium Studia Geotechnica et Mechanica 39 3 67 78 https://doi.org/10.1515/sgem-2017-0031 10.1515/sgem-2017-0031 Search in Google Scholar

Uciechowska-Grakowicz, A., Strzelecki, T. (2016). Numerical model of heat transfer in three phases of the poroelastic medium. Studia Geotechnica et Mechanica, 38(2), 53–59. https://doi.org/10.1515/sgem-2016-0019 Uciechowska-GrakowiczA. StrzeleckiT. 2016 Numerical model of heat transfer in three phases of the poroelastic medium Studia Geotechnica et Mechanica 38 2 53 59 https://doi.org/10.1515/sgem-2016-0019 10.1515/sgem-2016-0019 Search in Google Scholar

Strzelecki, T. (2006). Równania termokonsolidacji gruntów i skał: Geotechnika i budownictwo specjalne. In XXIX Zimowa Szkoła Mechaniki Górotworu i Geoinzynierii, Kraków Krynica 12–17 marca 2006 (pp. 285–299). wyd. Katedry Geomechaniki, Budownictwa i Geotechniki AGH. StrzeleckiT. 2006 Równania termokonsolidacji gruntów i skał: Geotechnika i budownictwo specjalne In XXIX Zimowa Szkoła Mechaniki Górotworu i Geoinzynierii Kraków Krynica 12–17 marca 2006 285 299 wyd. Katedry Geomechaniki, Budownictwa i Geotechniki AGH Search in Google Scholar

Biot, M. A., Willis, D. G. (1957). The Elastic Coefficients of the Theory of Consolidation. Journal of Applied Mechanics. https://doi.org/10.1002/9780470172766.ch13 BiotM. A. WillisD. G. 1957 The Elastic Coefficients of the Theory of Consolidation Journal of Applied Mechanics https://doi.org/10.1002/9780470172766.ch13 10.1115/1.4011606 Search in Google Scholar

Blachowski, J. (2015). Methodology for assessment of the accessibility of a brown coal deposit with Analytical Hierarchy Process and Weighted Linear Combination. Environmental Earth Sciences, 74(5), 4119–4131. https://doi.org/10.1007/s12665-015-4461-0 BlachowskiJ. 2015 Methodology for assessment of the accessibility of a brown coal deposit with Analytical Hierarchy Process and Weighted Linear Combination Environmental Earth Sciences 74 5 4119 4131 https://doi.org/10.1007/s12665-015-4461-0 10.1007/s12665-015-4461-0 Search in Google Scholar

Nowak, J., Kudelko, J. (2013). LGOM region as a perspective power energy basin and implementation of innovative lignite development methods. Mineral Economics, 25(2–3), 65–70. https://doi.org/10.1007/s13563-012-0024-y NowakJ. KudelkoJ. 2013 LGOM region as a perspective power energy basin and implementation of innovative lignite development methods Mineral Economics 25 2–3 65 70 https://doi.org/10.1007/s13563-012-0024-y 10.1007/s13563-012-0024-y Search in Google Scholar

Blinderman, M. S., Jones, R. M. (2002). The Chinchilla IGCC Project to Date: Underground Coal Gasification and Environment. Gasification Technologies Conference, San Francisco, USA, October 27–30, 14. Retrieved from http://www.lincenergy.com/data/info_sheets/u3-fact.pdf BlindermanM. S. JonesR. M. 2002 The Chinchilla IGCC Project to Date: Underground Coal Gasification and Environment Gasification Technologies Conference San Francisco, USA October 27–30 14 Retrieved from http://www.lincenergy.com/data/info_sheets/u3-fact.pdf Search in Google Scholar

Yang, L. H. (2008). Model test on Underground Coal Gasification (UCG) with low-pressure fire Seepage push-through. Part I: Test conditions and air fire seepage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(17), 1587–1594. https://doi.org/10.1080/15567030802112102 YangL. H. 2008 Model test on Underground Coal Gasification (UCG) with low-pressure fire Seepage push-through. Part I: Test conditions and air fire seepage Energy Sources, Part A: Recovery, Utilization and Environmental Effects 30 17 1587 1594 https://doi.org/10.1080/15567030802112102 10.1080/15567030802112102 Search in Google Scholar

eISSN:
2083-831X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics