1. bookVolume 41 (2019): Edition 2 (June 2019)
Détails du magazine
License
Format
Magazine
eISSN
2083-831X
Première parution
09 Nov 2012
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Effect of Tunnel Progress on the Settlement of Existing Piled Foundation

Publié en ligne: 28 Jun 2019
Volume & Edition: Volume 41 (2019) - Edition 2 (June 2019)
Pages: 102 - 113
Reçu: 18 Jul 2018
Accepté: 13 Feb 2019
Détails du magazine
License
Format
Magazine
eISSN
2083-831X
Première parution
09 Nov 2012
Périodicité
4 fois par an
Langues
Anglais
Introduction

Tunnelling has been widely used during the past decades. Due to the fast population growth and industrial activity, such type of infrastructures becomes a common technique in the urban area providing a wide range of facilities (transportation, electric line, ditches, etc...). For high-rise buildings supported by deep foundations, the construction of tunnel induces ground movements, which in turn affect the bearing capacity as well as the settlement of the existing piles.

There has been considerable research examining the behaviour of the soil-tunnel-pile interaction and the possible damage on an existing piled foundations caused by tunnelling. These include field observations (Mair 1993; Forth and Thorley 1996), geotechnical centrifuge modelling ( Loganathan et al. 2000; Jacobsz et al. 2002; Ng et al. 2013, Mair and Williamson 2014, Boonsiri and Takemura 2015) and analytical and numerical modelling (Lee and Ng 2006; Lee et al 2007, Yang et al 2011, Miro et al 2011, Fattah et al 2014, Lee 2012, Lee 2013, Yoo 2013, Basile 2014, Lee et al 2016).

The objective of this study is to investigate the behaviour of piled foundation due to tunnel construction. The main aims of the study are to numerically estimate the longitudinal, lateral, and vertical distances of the tunnel face from piles after which further tunnelling progress would be risky.

Finite Element Modelling
Discretization and Boundary Conditions

Single and group of (3 × 3) piles with an optimum centre-to-centre spacing of s = 3d (Bowles, 1997) were modelled to study the behaviour of the pile groups, where d is the diameter of the pile and D is the diameter of the tunnel. Figure 1 shows the three dimensional finite element mesh that was used in the numerical analyses. The mesh dimensions in the x-direction are 60 m (10 D), that is, 30 m in each side of the centre line of the tunnel, y-direction is 81 m (13.5 D), and in the z-direction is 36 m (6 D). The mesh consists of nearly 28,000 elements (10-node tetrahedrons) with over 32,000 nodes. The boundary conditions of the geometry model are as given below:

Figure 1

3D finite element meshes, dimensions of problem and axis location used in the analysis.

Vertical model boundaries with their normal in x -direction (i.e., parallel to the yz -plane) are fixed in the x -direction (ux = 0) and free in y- and z-direction.

Vertical model boundaries with their normal in y -direction (i.e., parallel to the xz -plane) are fixed in the y -direction (uy = 0) and free in x- and z -directions.

Vertical model boundaries with their normal neither in x- nor in the y-direction are fixed in x - and y -directions (ux = uy = 0) and free in z-direction.

The model bottom boundary is fixed in all directions (ux = uy = uz = 0).

The ‘ground surface’ is free in all directions.

A fine mesh was used near the tunnel and pile locations due to the concentration of large shear strains; while a coarser mesh was used outside these zones. The tunnel diameter D is constant throughout the analysis and is equal to 6 m. Figure 2 shows the sectional views of the geometry used in the analysis for a single pile and group of piles, respectively, where E is the lateral distance from the tunnel centre to the pile centre in case of single pile analysis and to the pile group centre in case of pile group analysis, and C is the vertical clearance between the pile tip and the tunnel crown. The pile’s length (L) was assumed to be 18 m with a diameter (d) of 1 m. The connection of piles with the cap was assumed to be a hinge, and the thickness of the pile cap is 1 m. In this study, the behaviour of the centre and corner piles within the pile group was analysed. The pile cap dimensions and the positions of the piles within the group are shown in Figure 3. It is assumed that the construction was performed using the shield tunnelling tunnel boring machine (TBM) (Chapman, 2010). The water table level was assumed to be at the ground surface and the hydrostatic pore pressure was kept constant during the tunnel boring advancement.

Figure 2

Underground location of tunnel relative to a single and group of piles.

Figure 3

Piles cap dimension and Locations of piles in groups.

Material Parameters and Constitutive Models

An elasto-plastic analysis was adopted to simulate tunnel construction. Pile–soil interaction was included using the embedded pile feature (Brinkgreve et al., 2013). The embedded pile is a pile composed of beam elements that can be placed in an arbitrary direction in the sub-soil and that interacts with the sub-soil by means of special interface elements.

Table 1 summarizes the concrete parameters used in the present study. Tunnel-soil interactions were included using interface elements around the tunnel. Interfaces are composed of 12-node elements consisting of six pairs of nodes, which offer compatibility with the 6-noded triangular sides of the soil and tunnel lining elements, (Brinkgreve et al., 2013). An elasto-plastic Hardening Soil (HS) model was used to simulate the soil structure interaction at the tunnel-soil interface. An isotropic elastic model was used for the pile, piles cap, tunnel lining and tunnel boring machine shield (TBM). Zarev (2016) stated that the advanced models like HS and HS small model are required for obtaining a realistic prediction of the deformations during shield tunnelling. Table 2 summarizes the soil properties adopted from Miro et al., 2012. According to Zarev (2016), the HS model allows for accounting the plastic collapse (isotropic hardening cap plasticity) as well as plastic shearing due to deviatoric loading with shear/frictional hardening (deviatoric yielding). For the deviatoric yielding a non-associated and for the cap plasticity an associated plastic flow rule is prescribed.

Concrete parameters adopted in the numerical analysis.

ParametersValuesUnitsModel
PilePile capTunnel liningTBM shield
Diameter (D)1---mLinear
Thickness (t)-10.250.35melastic
Elasticity modulus (E)30×10630×10630×106210×106kN/m2kN/m3$\frac{{\text{kN}}/{{{\text{m}}^{\text{2}}}}\;}{{\text{kN}}/{{{\text{m}}^{\text{3}}}}\;}$
Unit weight (γ)25252538
Possion’s ratio (ѵ)0.20.20.20.3-

Soil parameters adopted in the numerical analysis (from Miro et al. 2012).

Soil Parameters HS model
Parametersvaluesunits
Friction angle, φ35
Dilatancy angle, Ψ5
Cohesion, c10[kN/m2]
Secant stiffness in the standard drained triaxial test, Eref50$E_{ref}^{50}$35000[kN/m2]
Tangent stiffness for primary oedometer loading, Erefoed$E_{ref}^{oed}$35000[kN/m2]
Unloading and reloading stiffness, Erefur$E_{ref}^{ur}$100000[kN/m2]
Reference pressure, pref100[kN/m2]
Power for stress-level dependency of stiffness, m0.7[-]
Failure ratio, Rf0.9[-]
Poisson’s ratio for unloading-reloading,Ѵur0.2[-]
Soil weight above phreatic level, γunsat17[kN/m3]
Soil weight below phreatic level, γsat20[kN/m3]
Strength reduction factor for interfaces in0.6[-]
PLAXIS, Rinter
Numerical Analysis Procedure

The numerical modelling composed of three stages: initial geostatic equilibrium, application of an axial load at the pile head under the service condition and tunnel excavation. The simulation of the tunnelling process started from Y/D = -5 to Y/D = +5 (-30 m to +30 m) in the longitudinal direction (Y), as shown in Figure 4. The pile axis was located at Y/D = 0.0. At the second stage, an axial load of 1000 kN (calculated from static pile capacity) was applied to the pile head in order to simulate the service loading prior to the third stage, that is, tunnel excavation. In case of pile group analysis the load was 140.6 kN/m2 distributed on the pile cap. After the application of loading, the tunnel excavation progress was simulated in 40 steps.

Figure 4

The zone of infuence in longitudenal direction.

Tunnel Advancement Simulation Procedures

The progress of the TBM and the delayed installation of the lining at the tunnel periphery cause a stress release at the soil surrounding the tunnel. Hence, radial and longitudinal deformations will take place in the soil body

that tends to move towards the tunnel’s cavity. This is commonly defined as (volume loss). The ground loss for a TBM excavated tunnel occurs in three stages:

face loss (longitudinal ground movement into the tunnel face)

shield loss (radial ground movement into the gap created by TBM overcut)

tail loss (due to the gap closure at the tail).

Field observations showed that pile settlement could be classified into three categories, depending on the position of the pile toe relative to the tunnel axis (see Fig. 5). In particular piles with their bases in Zone A settled more than the ground surface, the piles in Zones B settled approximately by the same amount as the ground surface and the piles found in Zones C settled less than the ground surface (Kaalberg et al., 1999).

Figure 5

Zones of pile movement around a tunnel driven through soft clays and dense sands after the Heinenoord full-scale trial (Kaalberg et al. 1999).

Several previous studies indicate that piles with their tips directly above the tunnel (i.e., within a horizontal offset of one tunnel radius from the tunnel axis) are likely to settle more than the surface, whereas piles outside this area generally settle less than the surface. This causes a narrowing of the pile head settlement profile with respect to the greenfield surface settlement trough, leading to an increased potential for building damage. Moreover, assessing tunnelling induced deformations in buildings using a tunnel-pile interaction analysis (i.e. assuming that the building follows the settlement curve obtained from a tunnel-pile or tunnel-pile group analysis) does not allow inclusion of the influence of the building on the global interaction; this may be overly conservative in the cases of relatively stiff structures, as illustrated by a case study reported by Goh and Mair (2014).

Numerical modelling of shield tunnelling

The construction of the shield tunnel lining consists of connecting a series of concrete ring segments, of about 1.5 m long for each segment, within the TBM to form the tunnel lining and the TBM stopped to move during the lining erection. After erecting a tunnel lining ring, the boring is continued to ensure enough space to erect the next lining ring. This process is repeated until the tunnel reaches its specified location.

The lining is modelled as a linear elastic volume element and the TBM is modelled as a linear elastic plate element. The TBM causes a gap between the external diameter of the shield and the erected concrete lining which is filled with grout during the TBM advancement. The grouting process is important to lead the settlement of the soil surface to be within acceptable limits and provides stability for the surrounding soil.

The excavation process at each segment (1.5 m) of boring is modelled as follows:

The TBM starts to excavate the soil (deactivation of the finite elements at the tunnel head)

Support the tunnel face by applying an adverse pressure

Activate the TBM shield, that is, of the plate elements

Applying a back-fill grouting pressure to the back of the TBM

Installing (activation) a new concrete lining ring

Parametric Study
Effect of tunnel location relative to pile and piles group in the transverse direction (x-direction)

Several tunnelling scenarios were adopted, as shown in Table 3, in terms of transverse (x-direction) tunnel location relative to the centre of the pile or group of piles. Thus analysis series I represents the case where the central axis

Analysis series for a single and group of piles with different offset ratio (E/D)

Single pilePile group (3×3)
Analysis seriesIIIIIIIVVVIVIIVIIIIXX
C/D0.160.160.160.160.160.160.160.160.160.16
E/D00.51.01.52.000.51.01.52.0

for both the tunnel and the single pile were considered (E/D = 0.0), analysis series II, III, IV, and V in which the tunnel is excavated adjacent to the piles and pile groups, giving the offset ratio (E/D) of the tunnel centre to pile centre of E/D = 0.5, 1.0, 1.5, and 2.0, respectively. The depth ratio C/D = 0.16 for every analysis series. For each analysis the tunnel advancement (Y/D) started from -5 Y/D to +5 Y/D with step length = (0.5 Y/D).

Effect of cover ratio C/D on piles

Several depth ratios C/D were considered with E/D = 0 remaining constant throughout the analysis. The C/D values were 0.16, 0.5, 0.75, and 1.0. Table 4 summarizes the analysis series with C/D, and E/D values for a single and group of piles with a constant offset ratio (E/D = 0).

Analysis series for a single and group of piles with different depth ratio (C/D).

Single pilePile group (3×3)
Analysis seriesXIXIIXIIIXIVXVXVIXVIIXVIIIXIXXX
C/D0.160.50.751.02.03.00.160.50.751.0
E/D0000000000
Results and Discussion

Tunnelling under and adjacent to a single and a group of piles can induce movements in the piles which can alter the axial loads of the piles. The results of the 3D finite element analyses were examined in terms of the progressive changes in the pile settlements and axial loads caused by the tunnel driving, so that the pile responses to the tunnel excavation could be identified. The results are presented in the following sections.

Effect of Tunnel Advancement (E/D = 0) on a Single Pile

Figure 6 presents the results of the analysis I (Table 3) with C/D = 0.16 and E/D = 0, and analysis G, where (analysis G) is the Greenfield condition tunnelling analysis without pile presence. Figure 6 shows the development of normalized pile head settlement δnet/δi${{{\delta }_{\text{net}}}}/{{{\delta }_{\text{i}}}}\;$(analysis I) and soil surface settlement δg/δi${{{\delta }_{\text{g}}}}/{{{\delta }_{\text{i}}}}\;$(analysis G) during the tunnel excavation steps (Y/D = -5 to +5). The Greenfield soil settlement (without pile) at the same pile location is also plotted in this figure, where

Figure 6

Distributions of normalized net pile head and soil surface settlement with tunnel advancement for single pile.

Figure 7

Displacement of soil at the end of excavation Y/D= +5. (Analysis I).

δnet:${{\delta }_{\text{net}}}:$is the net increase in the pile head settlement due to tunnel excavation process only excluding pile settlement developed under application of the axial pile loading (δnet=δ-δi).$\left( {{\delta }_{\text{net}=}}\delta \text{-}{{\delta }_{\text{i}}} \right).$

δ: is the total pile head settlement (combined effect of service pile loading and tunnelling)

δi: is the pile head settlement (1.90 mm) due to the service pile loading prior to tunnelling

δg: is the soil surface settlement at the pile centre location from the Greenfield condition (analysis G) during the tunnel excavation

Y/D: represent the normalized tunnel advancement (distance from tunnel face to pile centre)

Negative Y/D value means that the tunnelling progress is towards the pile centre, while positive Y/D means that the tunnelling passes the pile centre.

Figure 6 shows that δnet/δi${{{\delta }_{\text{net}}}}/{{{\delta }_{\text{i}}}}\;$increases as the tunnel excavation proceeds. At the end of the tunnel excavation, δg)max/δi,andδnet)max/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{g)max}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;,\,\,\,\text{and}\,\,\,\,{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net)max}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$reach 2.31, and 2.94, respectively. The δg)max${{\text{ }\!\!\delta\!\!\text{ }}_{\text{g)max}}}$value obtained from analysis G is 4.40 mm, and δnet)max${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net)max}}}$from the analysis I is 5.59 mm. The maximum pile

head settlement of the single pile due to tunnelling only is approximately 1.27 times larger than that computed from the Greenfield condition. The rate of pile settlement increases at each analysis step. Similar results were reported by Lee and Jacobsz (2006). When tunnelling was conducted within a range of Y/D = ± 1, δ at Y/D = -1 and Y/D = +1 were 3.85 mm, 5.78 mm, respectively, and reaches its maximum value at the end of excavation where δmax=7.49${{\text{ }\!\!\delta\!\!\text{ }}_{\max }}=7.49$mm, so that the percentage of settlement at Y/D = ±1D with respect to the maximum settlement at the end of tunnel excavation (δ/δmax)$\left( {\text{ }\!\!\delta\!\!\text{ }}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\max }}}\; \right)$was approximately (51.4% to 77.2%). Similarly, when tunnelling was conducted within Y/D = ±2 from the pile centre, approximately 39 to 88.5 % of total settlement was noticed within this range. Therefore, the zone of influence on the pile head settlement in the longitudinal direction can be considered as ± 2D from the pile centre, based on the large share of settlement that occurs within this range (about 89% of total settlement). This zone of influence is approximately close to those reported by Lee and Ng (2006), and Lee (2013). Figure 7 illustrates the soil displacement at the end of the tunnel excavation. At the end of the tunnel excavation Y/D = +5, the maximum pile head displacement increases by about three times relative to the initial pile head displacement.

Effect of Tunnel Advancement (E/D = 0) on Group of Piles

The effect of tunnel advancement on a group of piles was studied using analysis (VI) and analysis (G). Figure 8 shows the variations in the normalized pile head settlement δnet/${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}/$δi and soil surface settlement δg/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{g}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$(analysis G) for all the tunnel excavation steps (Y/D = -5 to +5), where, i is the centre pile head settlement (7.85 mm) from analysis series VI due to the service pile loading prior to tunnelling.

Figure 8

Distributions of normalized net pile head and soil surface settlement with tunnel advancement for group pile 3 x 3 (analysis IV and G).

Figure 8 shows that δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$increases as the tunnel excavation progresses. At the end of the tunnel excavation, δg)max/δi,andδnet)max/δi${{\text{ }\!\!\delta\!\!\text{ }}_{\text{g}}})\,{{{_{\max }}/{\text{ }\!\!\delta\!\!\text{ }}\;}_{\text{i}}},\,\,\,\,\,\text{and}\,\,\,\,\,{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}})\,{{{_{\max }}/{\text{ }\!\!\delta\!\!\text{ }}\;}_{\text{i}}}$at the centre of the pile group were 0.56 and 0.80, respectively, the δg)max${{\text{ }\!\!\delta\!\!\text{ }}_{\text{g}}}{{)}_{\max }}$obtained from analysis G was 4.40 mm, and δnet)max${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}{{)}_{\max }}$obtained from analysis VI for centre pile of group was 6.27 mm. The maximum head settlement of the centre pile due to tunnelling only is approximately 1.42 times that computed from the Greenfield condition. The rate of pile settlement increases at each analysis step. The results are in good agreement with Lee and Jacobsz (2006). It is clear that the longer the distance from the tunnel before reaching the pile, the smaller the pile settlement would be. When tunnelling was conducted within averages of Y/D= ±1 and Y/D= ±2 approximately 71-81% and 63-94% of total settlement was observed respectively. Therefore, the influence zone on the pile head settlement along the longitudinal direction can be considered as ±2D from the centre of pile group, because the pile head settlement almost appeared when tunnelling was restricted from Y/D = -2 to Y/D = +2, which is in a good agreement to those reported by Lee and Ng (2006), and Lee (2013). Figure 8 shows that the centre and corner piles settlement have almost the same behaviour.

Figure 9 illustrates the displacement of soil around the piles group at the end of tunnel excavation Y/D = +5. The total head settlement of the centre pile was 14.12 mm (effect of service pile loading and tunnelling combined). The total pile head settlement at the end of tunnel excavation was 1.8 times the initial pile head settlement (δi).

Figure 9

Soil displacement at the end of tunnel excavation Y/D= +5. (analysis VI).

Effect of Tunnel Location in Transverse X-Direction for Single Pile Analysis

The effect of transverse tunnel location relative to a pile was investigated using the pile head settlement (Table 3). Figure 10 shows the changes in the normalized net pile head settlement for the five series of analysis case, δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$for the entire tunnel excavation steps (Y/D = -5 to +5).

Figure 10

Variations of pile head settlement during tunnelling process for various E/D (analysis series I, II, III, IV, and V).

The value of C/D remains constant for all the five cases at 0.16. Figure 10 shows that larger distance in the transverse x-direction of the tunnel from pile results in smaller pile head settlement, which means that dnet at E/D = 0 is 3.25 times dnet at E/D = 2. From Figure 10, in case E/D = 0 the net settlement at the end of tunnel excavation is equal to 2.94 times the settlement due to service load, while in case of E/D = 2 the net settlement equal to 0.91 times the settlement due to service load at the end of the tunnel excavation.

It is shown that δnet/δi${{{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{\text{ }\!\!\delta\!\!\text{ }}\;}_{\text{i}}}$decreases with increasing the lateral distance from the tunnel to the pile. The pile head settlements at the end of the tunnel excavation obtained from Figure 10 are plotted against the lateral distance E/D as shown in Figure 11. As can be seen in this figure, δnet/${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}/$δi decreases with an increase in the lateral distance from the tunnel to the pile, and these values become small when E/D is greater than 2.0, indicating that the effect of tunnelling on piles located beyond 2D from the tunnel is not significant

Figure 11

Variation of normalized net pile head settlement with E/D at the end of tunnel excavation (Y/D= +5).

Effect of Tunnel Location Relative to Pile in Transverse X-Direction for Group Piles Analysis

The effect of tunnel location relative to a group of piles is investigated using the pile head settlement as given in Table 3. Figure 12 shows a variations in the normalized net pile head settlement (centre pile) for the five series of group piles analyses, (δnet/δi)$\left( {{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\; \right)$for the entire tunnel excavation steps (Y/D = -5 to +5), where δi is the centre pile head settlement (7.85 mm) due to the service pile loading prior to tunnelling. As seen in Figure 12 when E/D=0 the centre pile suffered the largest head settlement of δnet=${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}\text{=}$6.27 mm upon the completion of tunnel driving, while δnet=2.03mm${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}=2.03\,\,\text{mm}$at E/D=2. Figure 12 shows that the larger the distance in transverse X-direction of the tunnel from the centre pile the smaller the pile head settlement, which indicates that δnet${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}$at E/D=0 is 3.07 times δnet${{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}$at E/D = 2. Figure 12 also shows that in case of E/ D = 0 the increase in pile settlement caused by tunnelling is 80% of settlement due to service load while in case E/D = 2 the increase in pile head settlement caused by tunnelling is 25% of the settlement due to service load. It is evident that δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$in all cases decrease with increasing the lateral distance from the tunnel to the pile. These values are small when E/D> 2.0, indicating that the effect of tunnelling on the group that has its centre located beyond 2D from the tunnel may be ignored.

Figure 12

Variations of center pile head settlement at (3 x 3) piles group during tunnelling process for various E/D.

Effect of Tunnel-Pile Clearance, C/D on a Single Pile

The effect of Tunnel-pile clearance, C/D is examined using the pile head settlement of analyses series shown previously in Table 3 for single pile analysis. Figure 13 shows the variations in the normalized pile head settlement δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$for all the tunnel excavation steps (Y/D = -5 to +5). It is shown that the settlement increases with increasing C/D up to the tested value of C/D = 2. However, all the curves of different C/D ratios coincide after Y/D = 0, so that once the tunnel face comes under the pile centre there would be no further increase in the settlement with tunnel progress. Therefore, it is reasonable to consider C/D = 2 as the limit after which the tunnelling would be safe enough.

Figure 13

Distributions of normalized net pile head settlement with tunnel advancement for various C/D (single pile).

Effect of Tunnel-Pile Clearance, C/D on Group of Piles

Table 4 also shows the analysis series that represent the group of piles cases under several ratios of (C/D). Figure 15 shows the changes in the normalized pile head settlement δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$for all these series during the tunnel excavation (Y/D = -5 to +5), where δi is again the centre pile head settlement (7.85 mm) due to the service pile loading prior to tunnelling.

Figure 15

Distributions of normalized net pile head settlement with tunnel advancement for various C/D (group of piles). Analysis series (XV, XVI, XVII, and XVIII).

As shown in Figure 15, the net pile head settlement shows a little increase with the increase of C/D ratios until Y/D = 0, the case when the tunnel comes under the centre of the group; after that the settlement remains approximately constant. At Y/D = 0, δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$for C/D 0.16, 0.5, 0.75, and 1.0 are equal to 0.47, 0.48, 0.48, and 0.49, respectively. At Y/D = -1, δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$for C/D 0.16, 0.5, 0.75, and 1.0 are equal to 0.28, 0.31, 0.33, and 0.34, respectively.

It could be concluded that as the tunnel excavation progresses toward the piles group, δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$slightly increases when C/D increases, but after the tunnel passes the group δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$becomes approximately equal for all the suggested values of C/D.

The Influence of Soil Type on Pile Settlement during Tunnel Advancement

The influence of soil type on pile settlements during tunnel advancement was examined using two soil types: the first soil type was (c & φ) soil which is referred to as (soil 1), with the parameters shown in (Table 2). The second soil type was a sand and referred to as (soil 2) with φ = 37 and cohesion = 0. Table 5 summarizes the parameters of the two types of soil. The tunnel diameter is 6 m, pile diameter is 1 m, pile length is 18 m, and a single pile was used. Analysis series I is used for both soils, C/D = 0.16, and E/D = 0.

Analysis series for a single and group of piles with different depth ratio (C/D).

Soil typeφ (degree)c (kN/m2)
1*3510
2370
*Soil 1 has the same parameters as the soil used in (Table 2)

Figure 16 shows the changes in the net pile head settlement (δnet)$\left( {{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}} \right)$during tunnel excavation (Y/D) for the two types of soil. The pile head settlement due to the

Figure 16

Distributions of net pile head settlement with tunnel advancement for two types of soils and a single pile analysis (C/D= 0.16, and E/D= 0).

service pile loading prior to tunnelling is δi = 1.90 mm for soil 1, while it is δI = 4.43 mm for soil 2. This means that the sandy soil has settled more than the clay soil, which is due to the absence of the cohesion in the sandy soil. The settlement is small for both soils until reaching Y/D = -2. After reaching Y/D = -2 the settlement of soil 2 becomes larger than soil 1 but in both soils the settlement almost stabilized to a constant value of Y/D = +2.

Therefore, the zone of influence on the pile head settlement in the longitudinal direction is approximately the same for both types of the soil, and it can be considered as ±2D from the pile centre, based on the large share of settlement which occurs within this range (about 89% of total settlement for soil 1, and about 92% for soil 2).

The Zone of Influence

According to the results presented in this paper, it may be noticed that there is a zone of significant influence underneath the pile. If the tunnel advancement is kept off this zone then there should be no fear of pile collapse based on the assumption upon which this research is accomplished. This zone involves:

a distance ± 2D from the pile in the longitudinal direction.

a distance of ± 2D from both sides of the pile in the lateral direction.

a zone of 2D vertically below the pile tip.

In conclusion, there is a virtual parallelogram as shown in Figure 17 with side dimensions of 4D x 4D and 2D vertically with the upper surface being tangent to the pile tip and perpendicular to the pile axis. The space of this parallelogram represents the zone of significant influence during tunnel advancement below piles and it is advised to avoid this space.

Figure 17

Virtual parallelogram represents the zone of significant influence during tunnel advancement.

Comparison with Experimental Work

Although numerical analysis is considered as an efficient tool for solving complex geotechnical problems, the results become more reliable if it compares reasonably with other experimental or field data.

A centrifuge model performed by Logagnathan et al. (2000) was adopted in this study to check the validity of the present finite element analysis using Plaxis-3D program. Logagnathan et al. (2000) performed three tests in a plain strain rigid box to investigate the effect of tunnel on the ground deformation as well as on the nearby single and group of (2 × 2) piles. The ground loss was modelled by simultaneously pulling out the oil in the annulus between

the aluminium inner core and outer membrane, which cover the core along the tunnel; whereas, the volume loss was modelled progressively in the present finite element analysis. The details of the centrifuge tests are shown in Table 6.

Details of centrifuge tests (prototype scale), Logagnathan et al. (2000).

Test No.Tunnel depth, H: m
1Pile length, Lp = 18 m Pile diameter, d= 0.8 m15
2EI= 1400 MN m2 Tunnel diameter, D= 6 m Stiff kaolin clay, ~75 kPa18
321

The previous analysis illustrates that more than 89% of the settlement appeared at Y/D = +2 as given in section (4). Therefore this distance may be considered when assessing the tunnelling effect in when compared with Logagnathan et al. (2000). The comparison with the centrifuge test (test-3) shows reasonable agreements, as shown in Figure 18.

Figure 18

Comparison of the present numerical analysis with centrifuge test results.

Conclusions

A series of three-dimensional parametric numerical analyses were performed to study the response of a single pile and 3 x 3 pile group to shield tunnelling in the soil. The aim of the study was to identify the fundamental governing mechanism of the response of the pile to shield tunnelling, in terms of the pile head settlements and the pile axial load. The following conclusions can be drawn from the present study:

Tunnelling might induce a significant increase in the net pile head settlement δnet/δi${{{\text{ }\!\!\delta\!\!\text{ }}_{\text{net}}}}/{{{\text{ }\!\!\delta\!\!\text{ }}_{\text{i}}}}\;$compared to the pile head settlement induced by the application of service load. This increase may amount to 300% calculated at the end of the excavation on Y/D = +5 in case E/D = 0, C/D = 0.16 (where E is the lateral distance from the tunnel centre to the pile centre, C is the vertical clearance between the tunnel crown and the pile tip, and D is the tunnel diameter).

The influence zone on the pile head settlement along the longitudinal direction can be considered as ±2D from the pile centre, based on the large share of settlement that occurs within this range (about 89% of total settlement for the single pile and 94% of total settlement for the centre pile in the group).

The pile head settlement increases with the progress of tunnel face towards the pile and continues to increase after the tunnel passes through the pile; the pile settlement increase becomes negligible at a distance equal to 5D beyond the pile.

The maximum pile head settlement of the single pile due to tunnelling only is 1.27 larger than that computed from the Greenfield (tunnelling analysis without pile presence condition), while for a centre pile of the group 1.42 times larger than that computed from the Greenfield condition.

Larger distance in the lateral x-direction of the tunnel from pile results in smaller pile head settlement, δnet at E/D = 0 is 3.25 times δnet at E/D = 2. The tunnelling shows the insignificant effect as it passes laterally 2D away from the piles.

The zone of influence in the vertical direction is limited to C/D ≤ 2.

Figure 1

3D finite element meshes, dimensions of problem and axis location used in the analysis.
3D finite element meshes, dimensions of problem and axis location used in the analysis.

Figure 2

Underground location of tunnel relative to a single and group of piles.
Underground location of tunnel relative to a single and group of piles.

Figure 3

Piles cap dimension and Locations of piles in groups.
Piles cap dimension and Locations of piles in groups.

Figure 4

The zone of infuence in longitudenal direction.
The zone of infuence in longitudenal direction.

Figure 5

Zones of pile movement around a tunnel driven through soft clays and dense sands after the Heinenoord full-scale trial (Kaalberg et al. 1999).
Zones of pile movement around a tunnel driven through soft clays and dense sands after the Heinenoord full-scale trial (Kaalberg et al. 1999).

Figure 6

Distributions of normalized net pile head and soil surface settlement with tunnel advancement for single pile.
Distributions of normalized net pile head and soil surface settlement with tunnel advancement for single pile.

Figure 7

Displacement of soil at the end of excavation Y/D= +5. (Analysis I).
Displacement of soil at the end of excavation Y/D= +5. (Analysis I).

Figure 8

Distributions of normalized net pile head and soil surface settlement with tunnel advancement for group pile 3 x 3 (analysis IV and G).
Distributions of normalized net pile head and soil surface settlement with tunnel advancement for group pile 3 x 3 (analysis IV and G).

Figure 9

Soil displacement at the end of tunnel excavation Y/D= +5. (analysis VI).
Soil displacement at the end of tunnel excavation Y/D= +5. (analysis VI).

Figure 10

Variations of pile head settlement during tunnelling process for various E/D (analysis series I, II, III, IV, and V).
Variations of pile head settlement during tunnelling process for various E/D (analysis series I, II, III, IV, and V).

Figure 11

Variation of normalized net pile head settlement with E/D at the end of tunnel excavation (Y/D= +5).
Variation of normalized net pile head settlement with E/D at the end of tunnel excavation (Y/D= +5).

Figure 12

Variations of center pile head settlement at (3 x 3) piles group during tunnelling process for various E/D.
Variations of center pile head settlement at (3 x 3) piles group during tunnelling process for various E/D.

Figure 13

Distributions of normalized net pile head settlement with tunnel advancement for various C/D (single pile).
Distributions of normalized net pile head settlement with tunnel advancement for various C/D (single pile).

Figure 15

Distributions of normalized net pile head settlement with tunnel advancement for various C/D (group of piles). Analysis series (XV, XVI, XVII, and XVIII).
Distributions of normalized net pile head settlement with tunnel advancement for various C/D (group of piles). Analysis series (XV, XVI, XVII, and XVIII).

Figure 16

Distributions of net pile head settlement with tunnel advancement for two types of soils and a single pile analysis (C/D= 0.16, and E/D= 0).
Distributions of net pile head settlement with tunnel advancement for two types of soils and a single pile analysis (C/D= 0.16, and E/D= 0).

Figure 17

Virtual parallelogram represents the zone of significant influence during tunnel advancement.
Virtual parallelogram represents the zone of significant influence during tunnel advancement.

Figure 18

Comparison of the present numerical analysis with centrifuge test results.
Comparison of the present numerical analysis with centrifuge test results.

Details of centrifuge tests (prototype scale), Logagnathan et al. (2000).

Test No.Tunnel depth, H: m
1Pile length, Lp = 18 m Pile diameter, d= 0.8 m15
2EI= 1400 MN m2 Tunnel diameter, D= 6 m Stiff kaolin clay, ~75 kPa18
321

Analysis series for a single and group of piles with different offset ratio (E/D)

Single pilePile group (3×3)
Analysis seriesIIIIIIIVVVIVIIVIIIIXX
C/D0.160.160.160.160.160.160.160.160.160.16
E/D00.51.01.52.000.51.01.52.0

Soil parameters adopted in the numerical analysis (from Miro et al. 2012).

Soil Parameters HS model
Parametersvaluesunits
Friction angle, φ35
Dilatancy angle, Ψ5
Cohesion, c10[kN/m2]
Secant stiffness in the standard drained triaxial test, Eref50$E_{ref}^{50}$35000[kN/m2]
Tangent stiffness for primary oedometer loading, Erefoed$E_{ref}^{oed}$35000[kN/m2]
Unloading and reloading stiffness, Erefur$E_{ref}^{ur}$100000[kN/m2]
Reference pressure, pref100[kN/m2]
Power for stress-level dependency of stiffness, m0.7[-]
Failure ratio, Rf0.9[-]
Poisson’s ratio for unloading-reloading,Ѵur0.2[-]
Soil weight above phreatic level, γunsat17[kN/m3]
Soil weight below phreatic level, γsat20[kN/m3]
Strength reduction factor for interfaces in0.6[-]
PLAXIS, Rinter

Analysis series for a single and group of piles with different depth ratio (C/D).

Soil typeφ (degree)c (kN/m2)
1*3510
2370
*Soil 1 has the same parameters as the soil used in (Table 2)

Concrete parameters adopted in the numerical analysis.

ParametersValuesUnitsModel
PilePile capTunnel liningTBM shield
Diameter (D)1---mLinear
Thickness (t)-10.250.35melastic
Elasticity modulus (E)30×10630×10630×106210×106kN/m2kN/m3$\frac{{\text{kN}}/{{{\text{m}}^{\text{2}}}}\;}{{\text{kN}}/{{{\text{m}}^{\text{3}}}}\;}$
Unit weight (γ)25252538
Possion’s ratio (ѵ)0.20.20.20.3-

Basile, F. (2014). Effects of tunnelling on pile foundations. Soils and Foundations 54(3), 280-295.10.1016/j.sandf.2014.04.004BasileF.2014Effects of tunnelling on pile foundationsSoils and Foundations54328029510.1016/j.sandf.2014.04.004Ouvrir le DOISearch in Google Scholar

Zidan, A.F. and Ramadan, O.M.O. (2015). Three dimensional numerical analysis of the effects of tunnelling near piled structures, KSCE Journal Civil Engineering 19(4), 917-928.10.1007/s12205-014-0741-6ZidanA.F.RamadanO.M.O.2015Three dimensional numerical analysis of the effects of tunnelling near piled structuresKSCE Journal Civil Engineering19491792810.1007/s12205-014-0741-6Ouvrir le DOISearch in Google Scholar

Bezuijen, A. and van der Schrier, J. S. (1994). The influence of a bored tunnel on pile foundations. In Proceeding of Centrifuge 94, (pp.681-686). Belkama.BezuijenA.van der SchrierJ. S.1994The influence of a bored tunnel on pile foundationsProceeding of Centrifuge94681686Search in Google Scholar

Boonsiri, I. and Takemura, J. (2015). Observation of Ground Movement with Existing Pile Groups Due to Tunneling in Sand Using Centrifuge Modelling. Geotechnical and Geological Engineering 33(3), 621-640.10.1007/s10706-015-9845-0BoonsiriI.TakemuraJ.2015Observation of Ground Movement with Existing Pile Groups Due to Tunneling in Sand Using Centrifuge ModellingGeotechnical and Geological Engineering33362164010.1007/s10706-015-9845-0Ouvrir le DOISearch in Google Scholar

Bowles, J. E. (1997). Foundation Analysis and Design (5th ed). McGraw-Hill Companies, Inc.BowlesJ. E.1997Foundation Analysis and Design(5th ed)McGraw-Hill Companies, IncSearch in Google Scholar

Brinkgreve, R. B. J. Engin, E. and Swolfs, W. M. (2013) eds, Plaxis 3D tutorial manual.BrinkgreveR. B. J. Engin, E.SwolfsW. M.2013Plaxis 3D tutorial manualSearch in Google Scholar

Chapman, D., Metje, N., Stärk, A. (2010). Introduction to Tunnel Construction (2nd ed). CRC Press, Taylor & Francis Group.ChapmanD.MetjeN.StärkA.2010Introduction to Tunnel Construction(2nd ed)CRC Press, Taylor & Francis Group10.1201/9781315273495Search in Google Scholar

Fattah, M. Y., Shlash, K. T. & Al-Soud, M. S. (2012). Boundary Element Analysis of a Lined Tunnel Problem. International Journal of Engineering IJE TRANSACTIONS B: Applications Vol. 25, No. 2, (May 2012), pp.87-94.FattahM. Y.ShlashK. T.Al-SoudM. S.2012Boundary Element Analysis of a Lined Tunnel ProblemInternational Journal of Engineering, IJE TRANSACTIONS B: Applications252(May 2012), pp879410.5829/idosi.ije.2012.25.02b.02Search in Google Scholar

Forth, R. A., & Thorley, C. B. B. (1996). Hong Kong Island line predictions and performance. In Proceeding of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp.677-682), London, Balkema.ForthR. A.ThorleyC. B. B.1996Hong Kong Island line predictions and performanceProceeding of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground677682London, BalkemaSearch in Google Scholar

Goh, K.H. & Mair, R.J. (2014). Response of framed buildings to excavation-induced movements. Soils and Foundations 54 (3), 250–268.GohK.H.MairR.J.2014Response of framed buildings to excavation-induced movementsSoils and Foundations54325026810.1016/j.sandf.2014.04.002Search in Google Scholar

Hergarden, H. J. A. M., Van der Poel, J. T. & Van der Schrier, J. S. (1996). Ground movements due to tunnelling: Influence on pile foundations. In Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, April 15-17 (pp.519-524), London. R. J. Mair & R. N. Taylor (eds).HergardenH. J. A. M.Van der PoelJ. T.Van der SchrierJ. S.1996Ground movements due to tunnelling: Influence on pile foundationsProceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft GroundApril 15-17 (pp519524LondonMairR. J.TaylorR. N.(eds)Search in Google Scholar

Jacobsz, S. W., Standing, J. R., Mair, R. J. Hagiwara, T. & Sugiyama, T. (2004). Centrifuge modeling of tunneling near driven piles. Soils & Foundations 44(1) 49-56.103208/sandf.44.49JacobszS. W.StandingJ. R.MairR. J. Hagiwara, T.SugiyamaT.2004Centrifuge modeling of tunneling near driven pilesSoils & Foundations441495610.3208/sandf.44.49Ouvrir le DOISearch in Google Scholar

Kaalberg, F. J. Lengkeek, H. J. and Teunissen, E.A.H. (1999), “Evaluatie van de meetresultaten van het proefpalenprojek ter plaatse van de tweede Heinenoord tunnel” (in Dutch) Adviesbureau Noord/Zuidlijn, Amsterdam (No. R981382).KaalbergF. J. Lengkeek, H. J.TeunissenE.A.H.1999“Evaluatie van de meetresultaten van het proefpalenprojek ter plaatse van de tweede Heinenoord tunnel” (in Dutch)Adviesbureau Noord/ZuidlijnAmsterdam(No. R981382)Search in Google Scholar

Lee, C.J. (2012). Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock. Tunnelling and Underground Space Technology (32), 132–142.101016/j.tust.2012.06.005LeeC.J.2012Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rockTunnelling and Underground Space Technology3213214210.1016/j.tust.2012.06.005Ouvrir le DOISearch in Google Scholar

Lee, C.J. (2013). Numerical analysis of pile response to open face tunneling in stiff clay. Computers and Geotechnics (51), 116–127.10.1016/j.compgeo.2013.02.007LeeC.J.2013Numerical analysis of pile response to open face tunneling in stiff clayComputers and Geotechnics5111612710.1016/j.compgeo.2013.02.007Ouvrir le DOISearch in Google Scholar

Lee, C.J. & Jacobsz, S.W. (2006). The Influence of Tunnelling on Adjacent Piled Foundations. Tunnelling and Underground Space Technology 21 (3–4), 430-435.10.1016/j.tust.2005.12.072LeeC.J.JacobszS.W.2006The Influence of Tunnelling on Adjacent Piled FoundationsTunnelling and Underground Space Technology213–443043510.1016/jtust.2005.12.072Ouvrir le DOISearch in Google Scholar

Lee, G.T.K. and Ng, C.W.W. (2006). Three-dimensional numerical simulation of tunnelling effects on an existing pile. In K.J. Bakker, A. Bezuijen, W. Broere, and E.A. Kwast (eds) Geotechnical Aspects of Underground Construction in Soft Ground (pp. 139-144). London: Taylor & Francis Group.LeeG.T.K.NgC.W.W.2006Three-dimensional numerical simulation of tunnelling effects on an existing pileBakkerK.J.BezuijenA.BroereW.KwastE.A.Geotechnical Aspects of Underground Construction in Soft Ground139144LondonTaylor & Francis GroupSearch in Google Scholar

Lee, C.J. Jun, S.H. Yoo, N.J. & Kim, G.W. (2007). The effects of tunnelling on an adjacent single pile. In Barták, J., Hrdina, I, Romancov, G. & Zlámal, J. (eds), Underground Space – the 4th Dimension of Metropolises (pp. 527-532). London, Taylor and Francis Group.LeeC.J. Jun, S.H. Yoo, N.J.KimG.W.2007The effects of tunnelling on an adjacent single pileBartákJ.HrdinaIRomancovG.ZlámalJ.Underground Space – the 4th Dimension of Metropolises527532LondonTaylor and Francis Group10.1201/NOE0415408073.ch88Search in Google Scholar

Lee, C.J. Jeon, Y.J. Kim, S.H. and Park, I.J. (2016). The influence of tunneling on pre-existing piled foundation in weathered soil. Geomechanics and Engineering 11(4), 553-570.1012989/gae.2016.11.4.553LeeC.J. Jeon, Y.J. Kim, S.H.ParkI.J.2016The influence of tunneling on pre-existing piled foundation in weathered soilGeomechanics and Engineering11455357010.12989/gae.2016.11.4.553Ouvrir le DOISearch in Google Scholar

Loganathan, N. Poulos, H. G. & Stewart, D. P. (2000). Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique 50(3), 283–294.10.1680/geot.2000.50.3.283LoganathanN. Poulos, H. G.StewartD. P.2000Centrifuge model testing of tunnelling-induced ground and pile deformationsGeotechnique50328329410.1680/geot.2000.50.3.283Ouvrir le DOISearch in Google Scholar

Mair, R. J. (1993). Developments in geotechnical engineering research: Application to tunnels and deep excavations. In Proceedings of the Institution of Civil Engineers, Civil Engineerig, February 1993. 97(1), 27–41.MairR. J.1993Developments in geotechnical engineering research: Application to tunnels and deep excavationsProceedings of the Institution of Civil Engineers, Civil Engineerig, February 19939712741Search in Google Scholar

Mair, R. & Williamson, M. (2014). The influence of tunnelling and deep excavation on piled foundations. In Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground 25-27 August 2014 (pp. 21-30). Seoul, South Korea, C., Park, S.-W., Kim, B., Ban, H. (Eds.), Taylor and Francis.MairR.WilliamsonM.2014The influence of tunnelling and deep excavation on piled foundationsProceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground25-27 August 2014 (pp2130SeoulSouth Korea, C.ParkS.-W.KimB.BanH.(Eds.), Taylor and FrancisSearch in Google Scholar

Miro, S., Hartmann,D., Schanz, T., & Zarev, V. (2012). System Identification Methods for Ground Models in Mechanized Tunneling. In 19th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, 4-6 July 2012. University Weimar, Germany. K. Gürlebeck, T. Lahmer and F. Werner (eds.)MiroS.HartmannD.SchanzT.ZarevV.2012System Identification Methods for Ground Models in Mechanized Tunneling19th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering4-6 July 2012University Weimar, GermanyGürlebeckK.LahmerT.WernerF.(eds.)Search in Google Scholar

Mazek, S.A. (2014). Evaluation of surface displacement equation due to tunneling in cohesionless soil. Geomechanics and Engineering 7(1), 55-73.10.12989/gae.2014.7.1.055MazekS.A.2014Evaluation of surface displacement equation due to tunneling in cohesionless soilGeomechanics and Engineering71557310.12989/gae.2014.7.1.055Ouvrir le DOISearch in Google Scholar

Ng, C.W.W., Lu, H. and Peng, S.Y. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology (43), 350-361.10.1016/j.tust.2012.07.008NgC.W.W.LuH.PengS.Y.2013Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pileTunnelling and Underground Space Technology4335036110.1016/j.tust.2012.07.008Ouvrir le DOISearch in Google Scholar

Zarev, V. (2016). Model identification for the adaption of numerical simulation models – Application to mechanized shield tunneling Ph.D. Dissertation, Ruhr University, Bochum, Germany.ZarevV.2016Model identification for the adaption of numerical simulation models – Application to mechanized shield tunnelingPh.D. DissertationRuhr UniversityBochum, GermanySearch in Google Scholar

Yang, M., Sun, Q., L., MA K. (2011). Three-Dimensional Finite Element Analysis on Effects of Tunnel Construction on nearby Pile Foundation. Journal of Central South University of Technology 18(3), 909-916.10.1007/s11771-011-0780-9YangM.SunQ., L.MAK.2011Three-Dimensional Finite Element Analysis on Effects of Tunnel Construction on nearby Pile FoundationJournal of Central South University of Technology18390991610.1007/s11771-011-0780-9Ouvrir le DOISearch in Google Scholar

Yoo, C. (2013). Interaction between Tunneling and Bridge Foundation a 3D Numerical Investigation. Computers and Geotechnics (49), 70–78.10.1016/compgeo.2012.11.005YooC.2013Interaction between Tunneling and Bridge Foundation a 3D Numerical InvestigationComputers and Geotechnics49707810.1016/compgeo.2012.11.005Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo