1. bookVolume 71 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Traumatic ducts size varies genetically and is positively associated to resin yield of Pinus oocarpa open-pollinated progenies

Publié en ligne: 27 Jun 2022
Volume & Edition: Volume 71 (2022) - Edition 1 (January 2022)
Pages: 10 - 19
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
Abstract

Mexico ranks 5th in worldwide resin production. Pinus oocarpa is the most widely tapped pine tree in Mexico. Michoacán (central-western Mexico) is the first nationwide state producer of resin. Despite the P. oocarpa relevance, there is no genetic improvement program in the country for resin production. We evaluated the degree of genetic control for growth, anatomical traits, resin yield, and the correlation among them at an early age (five-years-old for growth, six for resin, and anatomical traits) in a P. oocarpa half-sib progeny trial. Families were originated from selected mother trees, based on their resin yield. We found significant genetic variation among families for stem volume (h2i= 0.12, h2f= 0.35), traumatic ducts (diameter: h2i= 0.63, h2f= 0.51; area: h2f= 0.81), and resin yield (individual and family narrow-sense heritability: h2i= 0.20, h2f= 0.52), and a positive correlation between diameter and area of traumatic ducts with resin yield (Pearson correlation: r= 0.73, p= 0.04; r= 0.71, p= 0.0497; respectively). Results suggest that the early selection (six-years-old) of superior P. oocarpa families, based on resin yield (estimated by microchipping technique), and/or based on larger diameter and area of traumatic ducts, appears to be a feasible strategy to develop seed orchards able to provide genetically improved seeds for intensive resin tree plantations. That would be an important alternative for a state as Michoacán, Mexico, where natural P. oocarpa stands are being replaced for avocado orchards for exportation.

Keywords

Boschiero AT, Tomazzello-Filho M (2012) Anatomical aspects of resin canals and oleoresin production in pine trees. In: Fett-Neto AG, Rodrigues-Corrêa KCS (eds) Pine resin: biology, chemistry and applications. Kerala, India: Research Signpost, pp 9-24, ISBN: 978-81-308-0493-4 Search in Google Scholar

Cabrita P (2021) A model for resin flow. In: KG Ramawat, HM Ekiert, S Goyal (eds) Plant cell and tissue differentiation and secondary metabolites. Reference Series in Phytochemistry. Springer, Cham, pp 1-28. https://doi.org/10.1007/978-3-030-30185-9_5 Search in Google Scholar

Clements RW (1974) Manual: Modern gum naval stores methods. USDA Forestry Service General Technical Report, Southeast Forest Experiment Station, Asheville, North Carolina, pp 1-29 Search in Google Scholar

Coley PD (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74(4):531-536. https://doi.org/10.1126/science.230.4728.895 Search in Google Scholar

Coppen JJ, Hone GA (1995) Non-wood forest products, vol. 2. Natural Resources Institute, Food and agriculture organization of the United Nations (FAO), Rome, Italy Search in Google Scholar

da Silva Rodrigues-Corrêa KC, de Lima JC, Fett-Neto AG (2013) Oleoresins from pine: production and industrial uses. In: Ramawat K., JM Mérillon (eds) Natural Products. Berlin, Germany: Springer, 4038-4051. https://doi.org/10.1007/978-3-642-22144-6_175 Search in Google Scholar

DeRose RJ, Bekker MF, Long JN (2017) Traumatic resin ducts as indicators of bark beetle outbreaks. Canadian Journal of Forest Research 47(9):1168-1174. https://doi.org/10.1139/cjfr-2017-0097 Search in Google Scholar

Diao S, Hou Y, Xie Y, Sun X (2016) Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genetics 17(1):104. https://doi.org/10.1186/s12863-016-0400-7 Search in Google Scholar

dos-Santos W, Souza DCL, de-Moraes MLT, de-Aguiar AV (2016) Genetic variation of wood and resin production in Pinus caribaea var. hondurensis Barret & Golfari. Silvae Genetica 65(1):31-37. https://doi.org/10.1515/sg-2016-0004 Search in Google Scholar

Dvorak WS, Potter KM, Hipkins VD, Hodge GR (2009) Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). International Journal of Plant Sciences 170(5):609-626. https://doi.org/10.1086/597780 Search in Google Scholar

Fabián-Plesníková I, Sáenz-Romero C, Cruz-de León J, Martínez-Trujillo M, Sánchez-Vargas NM (2020) Parámetros genéticos de las características de crecimiento de un ensayo de progenies de P. oocarpa. Madera y Bosques. 26(3):1-14. https://doi.org/10.21829/myb.2020.2632014 Search in Google Scholar

Fabián-Plesníková I, Sáenz-Romero C, Cruz-de León J, Martínez-Trujillo M, Sánchez-Vargas NM, Terrazas T (2021) Heritability and characteristics of resin ducts in Pinus oocarpa stems in Michoacán, México. IAWA Journal 42(3):258-278. https://doi.org/10.1163/22941932-bja10055 Search in Google Scholar

Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist 167(2):353-376. https://doi.org/10.1111/j.1469-8137.2005.01436.x Search in Google Scholar

Francisco-Arriaga F, García-Rojas G, Hilda R, Kido-Cruz A, Cortés-Zavala MT (2011) Ingreso generado por la recolección de recursos forestale en Pichátaro, Michoacán, México. Agricultura, Sociedad y Desarrollo 8(1):107-117. Search in Google Scholar

Gurgel-Garrido LM, Kageyama PY (1993) Evolução, com a idade, de parâmetros genéticos de Pinus elliottii var. elliottii Engelm., selecionado para a produção de resina. Revista do Instituto Florestal de São Paulo 5(1):21-37 Search in Google Scholar

Gurgel-Garrido LM do A, Ribas C, de O Garrido MA (1994) Variabilidade da produçāo de resina em Pinus elliotti Engelm. var. elliottii. Revista Instituto Florestal Sāo Paulo 6:113-128. Search in Google Scholar

Gurgel-Garrido LM do A, de O Garrido MA, da S Pires CL, Palomo M (1999) Variacão genética em progênies e procedências de Pinus caribaea Mor. var. bahamensis Barr. et Golf. para producão de resina e características de crescimento. Revista Instituto Florestal 11(2):105-121. Search in Google Scholar

Herms DA, Mattson WJ (1992) The dilema of plants: to grow or defend. The Quarterly Review of Biology 67(3):283-335. https://doi.org/10.1086/417659 Search in Google Scholar

Jayaraman K (1999) A statistical manual for forest research. Forestry research support programme for Asia and the Pacific. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific (FAO). Available at http://www.fao.org/3/x6831e/x6831e13.htm Search in Google Scholar

Karsky D, Strom B, Thistle H (2004) An improved method for collecting and monitoring pine oleoresin. USDA Forest Service, Missoula Technology and Development Center, Missoula, Montana, USA, pp 1-4. Search in Google Scholar

Krokene P (2016) Carbon castles and insect invaders: dissecting physical defences in conifer stems. Plant, Cell and Environment 39(8):1643-1645. https://doi.org/10.1111/pce.12687 Search in Google Scholar

Lai M, Dong L, Yi M, Sun S, Zhang Y, Fu L, Xu Z, Lei L, Leng C, Zhang L (2017) Genetic variation, heritability and genotype × environment interactions of resin yield, growth traits and morphologic traits for Pinus elliottii at three progeny trials. Forests 8(11), 409. https://doi.org/10.3390/f8110409 Search in Google Scholar

Lai M, Zhang L, Lei L, Liu S, Jia T, Yi M (2020) Inheritance of resin yield and main resin components in Pinus elliottii Engelm. at three locations in southern China. Industrial Crops and Products 144:112065. https://doi.org/10.1016/j.indcrop.2019.112065 Search in Google Scholar

Lara-Chavez A, Flinn BS, Egertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa pine (Pinus oocarpa var. oocarpa Schiede). Tree Physiology 31(5):539-554. https://doi.org/10.1093/treephys/tpr040 Search in Google Scholar

Lekha C, Sharma K (2005) Borehole method of oleoresin tapping Chir pine. Forest Chemicals Review 115(3):11-17 Search in Google Scholar

Lewinsohn E, Gijzen M, Savage TJ, Croteau R (1991) Defense mechanisms of conifers: relationship of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content. Plant Physiology 96(1):38-43. https://doi.org/10.1104/pp.96.1.38 Search in Google Scholar

Lin J, Hu Y, He X, Ceulemans R (2002) Systematic survey of resin canals in Pinaceae. Belgian Journal of Botany 135 (1-2):3-14. Search in Google Scholar

Liu Q, Zhou Z, Fan H, Liu Y (2013) Genetic variation and correlation among resin yield, growth, and morphologic traits of Pinus massoniana. Silvae Genetica 62(1-2):38–43. https://doi.org/10.1515/sg-2013-0005 Search in Google Scholar

Lombardero MJ, Ayres MP, Lorio Jr P, Ruel JJ (2000) Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecology Letters 3:329–339. https://doi.org/10.1046/j.1461-0248.2000.00163.x Search in Google Scholar

López-Upton J, Ramírez-Herrera C, Jasso-Mata J, Jiménez-Casas M, Aguilera-Rodríguez M, Sánchez-Velázquez J, Rodríguez-Trejo DA (2011) Situación de los recursos genéticos forestales en México. Food and agriculture organization of the United Nations (FAO): México City, Mexico Search in Google Scholar

López-Villamor A, Zas R, Pérez A, Cáceres Y, Nunes-da Silva M, Vasconcelos M, Vázquez-González C, Sampedro L, Solla A (2021) Traumatic resin ducts induced by methyl jasmonate in Pinus spp. Trees 35(2):557-567. https://doi.org/10.1007/s00468-020-02057-9 Search in Google Scholar

Matziris D (1982) Genetic variation in number of resin canals per needle of the Black Pine of Peloponnese. Dasiki Erevna (Greece) 3(2):153-175 Search in Google Scholar

Matziris D (1984) Genetic variation in morphological and anatomical needle characteristics in the black pine of Peloponnesos. Silvae Genetica 33(4-5):164-169 Search in Google Scholar

Moreira X, Mooney KA, Rasmann S, Petry WK, Carrillo-Gavilán A, Zas R, Sampedro L (2014) Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecology Letters 17(5):537-546. https://doi.org/10.1111/ele.12253 Search in Google Scholar

Neis FA, de Costa F, de Araujo AT Jr, Fett JP, Fett-Neto AG (2019a) Multiple industrial uses of non-wood pine products. Industrial Crops and Products 130:248-258. https://doi.org/10.1016/j.indcrop.2018.12.088 Search in Google Scholar

Neis FA, de Costa F, de Almeida MR, Colling LC, de O Junkes CF, Fett JP, Fett-Neto AG (2019b) Resin exudation profile, chemical composition, and secretory canal characterization in contrasting yield phenotypes of Pinus elliottii Engelm. Industrial Crops and Products, 132:76–83. https://doi.org/10.1016/j.indcrop.2019.02.013 Search in Google Scholar

Oliveira JG de (1987) Avaliação da produção de resina em progênies de Pinus elliottii em idade juvenil. Master’s thesis, Universidade Estadual do Paraná. Search in Google Scholar

Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: Structure, identification, properties, and uses of the commercial woods of the United States and Canada. 4th edn. New York, USA:McGraw-Hill Book Company. Search in Google Scholar

Parham MR (1976) Stimulation of oleoresin yield in conifers. Outlook on Agriculture 9(2):76-81. https://doi.org/10.1177/003072707600900207 Search in Google Scholar

Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytologist 132(2):203-233. https://doi.org/10.1111/j.1469-8137.1996.tb01842.x Search in Google Scholar

Pswarayi IZ, Barnes RD, Birks JS, Kanowski PJ (1996) Genetic parameter estimates for production and quality traits of Pinus elliottii var. elliottii in Zimbabwe. Silvae Genetica 45(4):216-222. Search in Google Scholar

Resende MDV de (2002) Genética biométrica e estatística no melhoramento de plantas perenes. Brasilia, Brasil: Embrapa Informação Tecnológica. Colombo: Embrapa Florestas, p 975, ISBN 8573831618 Search in Google Scholar

Reyes-Ramos A, Cruz -de León J, Martínez-Palacios A, Lobit PCM, Ambríz-Parra JE, Sánchez-Vargas NM (2019) Caracteres ecológicos y dendrométricos que influyen en la producción de resina en Pinus oocarpa de Michoacán, México. Madera y Bosques 25(1):1-13. https://doi.org/10.21829/myb.2019.2511414 Search in Google Scholar

Riaño-Melo O, Lizarazo I (2017) Estimación del volumen de madera en árboles mediante polinomio único de ahusamiento. Colombia Forestal 20(1):51–62. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a05 Search in Google Scholar

Roberds JH, Strom BL, Hain FP, Gwaze DP, McKeand SE, Lott LH (2003). Estimates of genetic parameters for oleoresin and growth traits in juvenile loblolly pine. Canadian Journal of Forest Research 33(12):2469-2476. https://doi.org/10.1139/x03-186 Search in Google Scholar

Rodríguez-García A, López R, Martín JA, Pinillos F, Gil L (2014) Resin yield in Pinus pinaster is related to tree dendrometry, stand density and tapping-induced systemic changes in xylem anatomy. Forest Ecology and Management 313:47–54. https://doi.org/10.1016/j.foreco.2013.10.038 Search in Google Scholar

Romanelli RC (1995) Seleçao precoce em progenies de Pinus elliotti var. elliottii Engelm. Revista do Instituto Florestal, São Paulo 7(1):101-103 Search in Google Scholar

Romanelli RC, Sebben AM (2004) Parâmetros genéticos e ganhos na seleção para produção de resina em Pinus elliottii var. elliottii, no sul do Estado de São Paulo. Revista do Instituto Florestal, São Paulo 16(1):11-23 Search in Google Scholar

Ruel JJ, Ayres MP, Lorio PL Jr (1998) Loblolly pine responds to mechanical wounding with increased resin flow. Canadian Journal of Forest Research 28(4):596-602. https://doi.org/10.1139/x98-030 Search in Google Scholar

Ruzin SE (1999) Plant microtechnique and microscopy. Oxford, UK:Oxford University Press, 322 p. https://doi.org/10.1006/anbo.2000.1231 Search in Google Scholar

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7):676-682. https://doi.org/10.1038/nmeth.2019 Search in Google Scholar

Schopmeyer CS, Mergen F, Evans TC (1954) Applicability of Poiseuille’s law to exudation of oleoresin from wounds on slash pine. Plant Physiology 29(1):82-87. https://doi.org/10.1104/pp.29.1.82 Search in Google Scholar

Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany 93(10):1490-1500. https://doi.org/10.3732/ajb.93.10.1490 Search in Google Scholar

Squillace AE, Bengtson GW (1961) Inheritance of gum yield and other characteristics of slash pine. Proceedings Southern Forest Tree Improvement Conference 6:85-96 Search in Google Scholar

Squillace AE, Gansel CR (1968) Assessing the Potential Oleoresin Yields of Slash Pine Progenies at Juvenile Ages. U. S. Department of Agriculture - Forest Service 4 Search in Google Scholar

Squillace AE, Gansel (1974) Juvenile: mature correlations in slash pine. Forest Science 20(3):225-229 Search in Google Scholar

Susilowati A, Siregar IZ, Supriyanto, Wahyudi I, Corryanti (2013) Genetic variation, heritability and correlation between resin production character of Pinus merkusii high resin yielder (HRy) in Cijambu seedling seed orchard (SSO). Biotropia 20:122-133. https://doi.org/10.11598/btb.2013.20.2.257 Search in Google Scholar

Tadesse W, Nanos N, Auñon FJ, Alía R, Gil L (2001) Evaluation of high resin yield-ers of Pinus pinaster Ait. Forest Genetetics 8(4):271–278 Search in Google Scholar

Vázquez-González C, Zas R, Erbilgin N, Ferrenberg S, Rozas V, Sampedro L (2020) Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology 40(10):1313–1326. https://doi.org/10.1093/treephys/tpaa064 Search in Google Scholar

Vázquez-González C, López-Goldar X, Alía R, Bustingorri G, Lario FJ, Lema M, de la-Mata R, Sampedro L, Touza R, Zas R (2021) Genetic variation in resin yield and covariation with tree growth in maritime pine. Forest Ecology and Management 482:118843. https://doi.org/10.1016/j.foreco.2020.118843 Search in Google Scholar

Westbrook JW, Resende MFR, Munoz P, Walker AR, Wegrzyn JL, Nelson CD, Neale DB, Kirst M, Huber DA, Gezan SA, Peters GF, Davis JM (2013) Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytologist 199(1):89-100. https://doi.org/10.1111/nph.12240 Search in Google Scholar

Wright J (2012) Introduction to forest genetics. London, United Kingdom: Academic Press INC, 463 p, ISBN: 9780323148887 Search in Google Scholar

Wright JA, Osorio LF (1992) Results of provenance and family within provenance trials of Pinus tecunumanii in Colombia, South America. Forest Ecology and Management 55(1-4):107–116. https://doi.org/10.1016/0378-1127(92)90095-q Search in Google Scholar

Wu HX (1999) Study of early selection in tree breeding. 2. Advantage through shortening the breeding cycle. Silvae Genetica 48(2):78–83 Search in Google Scholar

Zas R, Touza R, Sampedro L, Lario FJ, Bustingorri G, Lema M (2020a) Variation in resin flow among Maritime pine populations: Relationship with growth potential and climatic responses. Forest Ecology and Management 474:118351. https://doi.org/10.1016/j.foreco.2020.118351 Search in Google Scholar

Zas R, Quiroga R, Touza R, Vázquez-González C, Sampedro L, Lema M (2020b) Resin tapping potential of Atlantic maritime pine forests depends on tree age and timing of tapping. Industrial Crops and Products 157:112940. https://doi.org/10.1016/j.indcrop.2020.112940 Search in Google Scholar

Zeng LH, Zhang Q, He BX, Lian HM, Cai YL, Wang YS, Luo M (2013) Age trends in genetic parameters for growth and resin-yielding capacity in masson pine. Silvae Genetica 62(1-2):7-18. https://doi.org/10.1515/sg-2013-0002 Search in Google Scholar

Zerbe P, Bohlmann J (2014) Bioproducts, Biofuels, and Perfumes: Conifer terpene synthases and their potential for metabolic engineering. In: Jetter R. (eds) Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-04045-5_5 Search in Google Scholar

Zhao S, Erbilgin N (2019) Larger resin ducts are linked to the survival of lodge-pole pine trees during mountain pine beetle outbreak. Frontiers in Plant Science 10, 1459. https://doi.org/10.3389/fpls.2019.01459 Search in Google Scholar

Zobel B, Talbert J (1992) Técnicas de mejoramiento genético de árboles forestales. Mexico City, México: Limusa, 545 p, ISBN 9681828569 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo