1. bookVolume 70 (2021): Edition 1 (January 2021)
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Expression profiles of 11 candidate genes involved in drought tolerance of pedunculate oak (Quercus robur L.). Possibilities for genetic monitoring of the species.

Publié en ligne: 31 Dec 2021
Volume & Edition: Volume 70 (2021) - Edition 1 (January 2021)
Pages: 226 - 234
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
Abstract

Pedunculate oak (Quercus robur L.) is one of the most significant broadleaved tree species in Europe. However, various abiotic and biotic agents have influenced pedunculate oak forests, among which drought stress has been frequently described as the main driver of this species forests decline. In this study we assessed relative expression profile of 11 candidate genes involved in many different metabolic pathways and potentially responsible for oak drought tolerance. The obtained results succeed in partially tackling drought tolerance mechanisms of targeted natural pedunculated oak population. This gene pool may represent a base for adaptation and therefore genetic diversity should be conserved. In this paper we described different expression responses of four pedunculate oak ecological groups, characterized by different physiological status (senescent vs vital) and flowering period (early (var. praecox) vs late (var. tardissima)). The most significant differences in relative gene expression levels are shown between the flowering period (tardissima (8 genes upregulated) vs praecox (3 genes upregulated)), more than a physiological status (sene-scent vs vital). Only three genes wrky53, rd22 and sag21 showed upregulated expression pattern in senescent physiological groups, indicating their possible role in the coping mechanisms of oak in stressed environment. Results showed interesting connections of relative gene expression values of identified drought-tolerance related genes with flowering period and provide further recommendations for adequate conservation and monitoring of this important oak gene pool in its southeast refugium.

Keywords

Aghdasi M, Fazli F, Bagherieh MB (2012) Cloning and expression analysis of Arabidopsis TRR14 gene under salt and drought stress. Journal of Cell and Molecular Research 4:1–10. https://doi.org/10.22067/jcmr.v4i1.12269. Search in Google Scholar

Alberto F, Niort J, Derory J, Lepais O, Vitalis R, Galop D, Kremer A (2010) Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Molecular Ecology 19:2626-2639. https://doi.org/10.1111/j.1365-294X.2010.04631.x10.1111/j.1365-294X.2010.04631.x20561196 Search in Google Scholar

Arend M, Brem A, Kuster TM, Günthardt-Goerg MS (2013) Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biology 15: 169-176. https://doi.org/10.1111/j.1438-8677.2012.00625.x10.1111/j.1438-8677.2012.00625.x22776350 Search in Google Scholar

Beikircher B, Mayr S (2009) Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology 29(6): 765–775. https://dx.doi.org/10.1093/treephys/tpp01810.1093/treephys/tpp01819364707 Search in Google Scholar

Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl J, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533-546. https://dx.doi.org/10.1534/genetics.105.04843910.1534/genetics.105.048439145618116204213 Search in Google Scholar

Caswell TA, Droettboom M, Lee A, de Andrade ES, Hunter J, Hoffmann T, Ivanov P (2021) matplotlib/matplotlib: REL: v3.4.1 (Version v3.4.1). Zenodo. http://doi.org/10.5281/zenodo.4649959. Search in Google Scholar

Čehulić I, Sever K, Katičić Bogdan I, Jazbec A, Škvorc Ž, Bogdan S (2019) Drought impact on leaf phenology and spring frost susceptibility in a Quercus robur L. provenance trial. Forests, 10(1), 50. https://dx.doi.org/10.3390/f1001005010.3390/f10010050 Search in Google Scholar

Chung S, Parish RW (2008) Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Plant Journal 54(1):15-29. https://doi.org/10.1111/j.1365-313x.2007.03399.x10.1111/j.1365-313X.2007.03399.x18088305 Search in Google Scholar

Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodenes C, Alberto F, Kremer A (2010) Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 105(4):401-11. https://dx.doi.org/10.1038/hdy.2009.17010.1038/hdy.2009.17019997122 Search in Google Scholar

Dubravac T, Dekanić S, Roth V (2011) Dinamika oštećenosti i struktura krošanja stabala hrasta lužnjaka u šumskim zajednicama na gredi i u nizi – rezultati motrenja na trajnim pokusnim plohama. Šumarski list – posebni broj: 74-89. Search in Google Scholar

Ducousso A, Bordacs S (2003) EUFORGEN Technical Guidelines for genetic conservation and use for Pedunculate and sessile oaks (Quercus robur) and (Quercus petraea). Bioversity International. Search in Google Scholar

Durand J, Bodénès C, Chancerel E, Frigerio J, Vendramin G, Sebastiani F, Buanamici A, Gailing O, Koelewijn H, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin P, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570. https://dx.doi.org/10.1186/1471-2164-11-57010.1186/1471-2164-11-570309171920950475 Search in Google Scholar

Dure L, Greenway SC, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162-4168.10.1021/bi00517a0337284317 Search in Google Scholar

Temperate oaks and beech network (2003) EUFORGEN [online]. Available < http://www.ipgri.cgiar.org/networks/enforgen> [cited 12.07.2021.]. Search in Google Scholar

Hirano H (2021) Basic 7S globulin in plants. Journal of Proteomics 104209. https://doi.org/10.1016/j.jprot.2021.104209.10.1016/j.jprot.2021.10420933794343 Search in Google Scholar

Hsing YIC, Chen ZY, Chow TY (1995) A soybean cDNA (accesssion No. L20806) encoding a hydrophobic embryogenesis abundant protein. Plant Physiology 109: 1125-1127. Search in Google Scholar

Porth I, Koch M, Berenyi M, Burg A, Burg K (2005) Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Tree Physiology 25: 1317–1329. https://dx.doi.org/10.1093/treephys/25.10.131710.1093/treephys/25.10.131716076780 Search in Google Scholar

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R and Zhou B (eds.)]. Cambridge University Press. In Press. Search in Google Scholar

Vandesompele J, De Preterm K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3.7: 1-12. https://dx.doi.org/10.1186/gb-2002-3-7-research003410.1186/gb-2002-3-7-research003412623912184808 Search in Google Scholar

Kotrade P, Sehr EM, Wischnitzki E, Brüggemann W (2019) Comparative transcriptomics-based selection of suitable reference genes for normalization of RT-qPCR experiments in drought-stressed leaves of three European Quercus species. Tree Genetics & Genomes 15(3), 1-12. https://dx.doi.org/10.1007/s11295-019-1347-410.1007/s11295-019-1347-4 Search in Google Scholar

Le Provost G, Herrera R, Ap Paiva J, Chaumeil P, Salin F, Plomion C (2007) A micromethod for high throughput RNA extraction in forest trees. Biol Research 40:291–297. doi:10.4067/S0716-9760200700040000310.4067/S0716-97602007000400003 Search in Google Scholar

Le Provost G, Lesur I, Lalanne C, Da Silva C, Labadie K, Aury JM, Plomion C (2016) Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Tree physiology 36(11), 1330-1342. https://dx.doi.org/10.1093/treephys/tpw05610.1093/treephys/tpw05627358207 Search in Google Scholar

Leroy T, Louvet JM, Lalanne C, Le Provost G, Labadie K, Aury JM, Delzon S, Plomion C, Kremer A (2020) Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist 226: 1171–1182. https://dx.doi.org/10.1111/nph.1609510.1111/nph.16095716613231394003 Search in Google Scholar

Magalhães AP, Verde N, Reis F, Martins I, Costa D, Lino-Neto T, Castro PH, Tavares RM, Azevedo H (2016) RNA-Seq and gene network analysis uncover activation of an ABA-dependent signalosome during the cork oak root response to drought. Frontiers in Plant Science 6:1195. https://dx.doi.org/10.3389/fpls.2015.0119510.3389/fpls.2015.01195470744326793200 Search in Google Scholar

Manzoni S (2014) Integrating plant hydraulics and gas exchange along the drought-response trait spectrum. Tree Physiology 34(10): 1031–1034. https://dx.doi.org/10.1093/treephys/tpu08810.1093/treephys/tpu08825378559 Search in Google Scholar

Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA and Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecology and Bio-geography 14: 549-563. https://doi.org/10.1111/j.1466-822X.2005.00190.x10.1111/j.1466-822X.2005.00190.x Search in Google Scholar

Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology 120(4):1015-24. doi: 10.1104/pp.120.4.1015.10.1104/pp.120.4.10155933410444084 Search in Google Scholar

Murray SL, Ingle RA, Petersen LN, Denby KJ (2007) Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Molecular Plant-Microbe Interaction 20(11):1431-8. doi: 10.1094/MPMI-20-11-143110.1094/MPMI-20-11-143117977154 Search in Google Scholar

Spies N, Oufir M, Matusikova I, Stierschneider M, Kopecky D, Homolka A, Burg K, Fluch S, Hausman JF, Wilhelm E (2012) Ecophysiological and transcriptomic responses of oak (Quercus robur) to long-term drought exposure and rewatering. Environmental and Experimental Botany 77: 117–126. https://dx.doi.org/10.1016/j.envexpbot.2011.11.01010.1016/j.envexpbot.2011.11.010 Search in Google Scholar

Pilipović A, Drekić M, Stojnić S, Nikolić N, Trudić B, Milović M, Poljaković-Pajnik L, Borišev M, Orlović S (2020) Physiological Responses of Two Pedunculate Oak (Quercus robur L.) Families to Combined Stress Conditions - Drought And Herbivore Attack. Šumarski list 144 (11-12):5. https://doi.org/10.31298/sl.144.11-12.510.31298/sl.144.11-12.5 Search in Google Scholar

Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G et al. (2018) Oak genome reveals facets of long lifespan. Nature Plants 4: 440–452. https://dx.doi.org/10.1038/s41477-018-0172-310.1038/s41477-018-0172-3608633529915331 Search in Google Scholar

Ponton S, Dupouey J, Bréda N, Dreyer E (2002) Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype × environment interactions. Tree Physiology 22(6): 413-422. https://dx.doi.org/10.1093/treephys/22.6.41310.1093/treephys/22.6.41311960766 Search in Google Scholar

Rađević V, Pap P, Vasić V (2020) Management of the common oak forests in Ravni Srem: Yesterday, today, tomorrow. Topola (206): 41-52.10.5937/topola2006041R Search in Google Scholar

Roussel M, Le Thiec D, Montpied P, Ningre N, Guehl J, Brendel O (2009) Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits. Annals of Forest Science 66: 408. https://dx.doi.org/10.1051/forest/200901010.1051/forest/2009010 Search in Google Scholar

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132:365–86. https://dx.doi.org/10.1385/1-59259-192-2:36510.1385/1-59259-192-2:365 Search in Google Scholar

Stojanović D, Levanič T, Matović B, Bravo-Oviedo A (2015) Climate change impact on a mixed lowland oak stand in Serbia. Annals of Silvicultural Research 39(2): 94-99. https://dx.doi.org/10.12899/ASR-1126 Search in Google Scholar

Stojnić S, Kovačević B, Kebert M, Vaštag, E, Bojović M, Stanković-Neđić, M, Orlović S (2019a) The use of physiological, biochemical and morpho-anatomical traits in tree breeding for improved water-use efficiency of Quercus robur L. Forest Systems 28(3): e017. https://doi.org/10.5424/fs/2019283-1523310.5424/fs/2019283-15233 Search in Google Scholar

Stojnić S, Orlović, S, Pilipović A (2019b) Ex situ conservation of forest genetic resources in Serbia. In: Šijačić-Nikolić, M., Milovanović, J., Nonić, M. (Eds.). Forests of Southeast Europe under a changing climate. Conservation of forest genetic resources. Springer Nature Switzerland AG, pp. 227-23710.1007/978-3-319-95267-3_19 Search in Google Scholar

The Arabidopsis Information Resource (2015) Making and mining the „gold standard“ annotated reference plant genome. genesis doi: 10.1002/dvg.2287710.1002/dvg.22877454571926201819 Search in Google Scholar

Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biology 7: S12. https://doi.org/10.1186/gb-2006-7-s1-s1210.1186/gb-2006-7-s1-s12181054916925834 Search in Google Scholar

Torre S, Tattini M, Brunetti C, Fineschi S, Fini A, Ferrini F, Sebastiani F (2014) RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS One 9(11): e112487. https://dx.doi.org/10.1371/journal.pone.011248710.1371/journal.pone.0112487423105825393112 Search in Google Scholar

Trudić B, Avramidou E, Fussi B, Neophytou C, Stojnić S, Pilipović P (2021) Conservation of Quercus robur L. genetic resources in its south-eastern refugium using SSR marker system – a case study from Vojvodina province, Serbia. Austrian Journal of Forest Science 138 (2): 117-140. Search in Google Scholar

Trudić B, Radović S, Galović V, Jovanović Ž, Stanisavljević N (2012) Molekularni mehanzimi odgovora drvenastih vrsta biljaka na abiotički stres. Topola 189/190: 67-86. Search in Google Scholar

Trudić B, Galović V, Orlović S, Pap P, Pekeč S (2013) A strategy for the identifcation of a candidate gene for drought induced stress in pedunculate oak (Quercus robur l. (Q. pedunculata Ehrh.)), Fagaceae. Bulgarian Journal of Agricultural. Sciences 19: 338-346. Search in Google Scholar

Ueno S, Le Provost G, Léger V, Klopp C, Noirot C, Frigerio J, Salin F, Salse J, Abrouk M, Murat F, Brendel O, Derory J, Abadie P, Léger P, Cabane C, Barré A, de Daruvar A, Couloux A, Wincker P, Reviron M, Kremer A, Plomion C (2010) Bioinformatic analysis of Sanger and 454 ESTs for a keystone forest tree species: oak. BMC Genomics 11:650-674.10.1186/1471-2164-11-650301786421092232 Search in Google Scholar

Varela MC (1995) Consevation of genetic resources of Quercus suber in Portugal. In: European Forest Resources Programme (EUFORGEN). Search in Google Scholar

Voelker S, Meinzer F, Lachenbruch B, Brooks R, Guyette R (2014) Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance. Plant, Cell and Environment 37.3: 766-779. doi: 10.1111/pce.1219610.1111/pce.1219624004466 Search in Google Scholar

Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology 49(5):515-32. doi: 10.1023/a:1015557300450.10.1023/A:1015557300450 Search in Google Scholar

Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Molecular and General Genetics 238(1-2):17-25. doi: 10.1007/BF00279525.10.1007/BF002795258479424 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo