1. bookVolume 70 (2021): Edition 1 (January 2021)
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Polyploidy in Gymnosperms-A Reappraisal

Publié en ligne: 29 Jan 2021
Volume & Edition: Volume 70 (2021) - Edition 1 (January 2021)
Pages: 22 - 38
Détails du magazine
License
Format
Magazine
eISSN
2509-8934
Première parution
22 Feb 2016
Périodicité
1 fois par an
Langues
Anglais
Abstract

Recent polyploidy in gymnosperms is unusually scarce being present in only 9.80 % of the 714 taxa studied cytologically. Polyploid forms are represented by sporadic seedlings and individual trees, intraspecific polyploidy in cultivation or in wild and entirely polyploid species and genera. Polyploidy shows a non-random distribution in different genera being mostly prevalent in Ephedra and Juniperus, besides the classic examples of Sequoia and Fitzroya. Remarkably, both Ephedra and Juniperus show adaptive radiation by interspecific hybridization followed by polyploidy while in Ginkgo viable polyploid cytotypes are found in cultivation. Induced polyploidy has not provided any tangible results in the past but recent attempts on certain genera of Cupressaceae hold some promise of producing cultivars for horticulture trade. Lastly, various evidences derived from cytological analysis, fossil pollen, guard cells and comparative genomic studies indicating the occurrence of paleopolyploidy have been discussed.

Keywords

Abraham A, Mathew PM (1966) Cytology of Encephalartos hildebrandtii A. Br. & Bouche. Annals of Botany 30: 239–241. https://doi.org/10.1093/oxfordjournals.aob.a08407110.1093/oxfordjournals.aob.a084071 Search in Google Scholar

Adams R (2014) Junipers of the World: The Genus Juniperus. Bloomington, IN: Trafford Publishing. Search in Google Scholar

Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8: 135–141. https://doi.org/10.1016/j.pbi.2005.01.00110.1016/j.pbi.2005.01.00115752992 Search in Google Scholar

Adams RP, Schwarzbach AE, Tashev AN (2016) Chloroplast capture by a new variety, Juniperus sabina var. balkanensis RP Adams and AN Tashev, from the Balkan Peninsula: A putative stabilized relictual hybrid between J. sabina and ancestral J. thurifera. Phytologia 98: 100-111. Search in Google Scholar

Adams RP, Johnson ST, Anderson J, Rushforth K, Farhat P, Valentin N, Siljak-Yakovlev S (2019) The origin of Juniperus xpfitzeriana, an allotetraploid hybrid of J. chinensis X J. sabina. Phytologia 101: 164-174. Search in Google Scholar

Ahuja MR (2005) Polyploidy in gymnosperms revisited. Silvae Genetica 54: 59-69. https://doi.org/10.1515/sg-2005-001010.1515/sg-2005-0010 Search in Google Scholar

Ahuja MR (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165: 5-19. https://doi.org/10.1007/s10681-008-9813-310.1007/s10681-008-9813-3 Search in Google Scholar

Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens) (D. Don) Endl. and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genetica 51: 93–100. Search in Google Scholar

Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089.10.1126/science.124108924357323 Search in Google Scholar

Avanzi S, Cionini PJ (1971) A DNA cytometric investigation on the development of the female gametophyte of Ginkgo biloba. Caryologia 24: 105–116. https://doi.org/10.1080/00087114.1971.1079641810.1080/00087114.1971.10796418 Search in Google Scholar

Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell and Environment 26; 571–584. https://doi.org/10.1046/j.1365-3040.2003.00988.x10.1046/j.1365-3040.2003.00988.x Search in Google Scholar

Beug HJ (1956) Pollendimorphismus bei Ephedra. Naturwissenschaften 43: 332-333. https://doi.org/10.1007/bf0062940210.1007/BF00629402 Search in Google Scholar

Bianco P, Medagli P, D‘Emericos S (1988) Numericromosomici per la flora italiana: 1136-1138. Inform. Bot. Ital., 19 : 319-321. Search in Google Scholar

Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678. https://doi.org/10.1105/tpc.02134510.1105/tpc.02134551415215208399 Search in Google Scholar

Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sciences (USA). 97: 4092-4097. https://doi.org/10.1073/pnas.97.8.409210.1073/pnas.97.8.40921815910760278 Search in Google Scholar

Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438. https://doi.org/10.1038/nature0152110.1038/nature0152112660784 Search in Google Scholar

Bretagnolle F, Thompson JD (1995) Tansley Review No. 78. Gametes with the stomatic chromosome number: Mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol.129: 1–22. https://doi.org/10.1111/j.1469-8137.1995.tb03005.x10.1111/j.1469-8137.1995.tb03005.x33874422 Search in Google Scholar

Brownfield L, Kohler C (2011) Unreduced gamete formation in plants: mechanism and prospects. Journal of Experimental Botany 62: 1659-1668. https://doi.org/10.1093/jxb/erq37110.1093/jxb/erq37121109579 Search in Google Scholar

Buck R, Hyasat S, Hossfeld A, Flores-RenteríaL (2020) Patterns of hybridization and cryptic introgression among one- and four-needled pinyon pines. Annals of Botany 126: 401–411. https://doi.org/10.1093/aob/mcaa04510.1093/aob/mcaa045742473832222765 Search in Google Scholar

Carta A, Bedini G, Peruzzi L (2020) A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytologist 228:1097-1106. https://doi.org/10.1111/nph.1666810.1111/nph.1666832421860 Search in Google Scholar

Chaturvedi M (1978) Pollen grains in Ephedra helvetica C.A.Mey. Current Science 47: 66. Search in Google Scholar

Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences (USA). 97: 4086-4091. https://doi.org/10.1073/pnas.97.8.408610.1073/pnas.97.8.40861815710760277 Search in Google Scholar

Chiba S (1951) Triploids and tetraploids of sugi (Cryptomeria japonica D.Don.) selected in forest nursery. Bull. Govt. For. Expt. Sta. No. 49, 99-108. Search in Google Scholar

Chiba S, Watanabe M(1952) Tetraploids of Larix kaempferi in the Nurseries. Bull Gov For Exp Sta. No. 57, Tokyo, 187–199. Search in Google Scholar

Chouhdry AS (1984) Karyomorphological and cytological studies in Ephedra. J. Sci. Hiroshima Univ., Ser. B, 19: 57–109. Search in Google Scholar

Chouhdry AS, Tanaka R (1981) Diploid form of Ephedra intermedia var. tibetica. Chromosome Inf. Serv. 31:3-4. Search in Google Scholar

Christiansen H (1950) A tetraploid of Larix decidua Miller.Det.Kgl. DanskeVidenk. Selsk. 18: 1-9. Search in Google Scholar

Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55-70. https://doi.org/10.11646/phytotaxa.19.1.310.11646/phytotaxa.19.1.3 Search in Google Scholar

Critchfield WB (1975) Interspecific hybridization in Pinus: a summary review. In: Fowler DP, Yeatman CY eds. Symposium on Interspecific and Interprovenance Hybridization in Forest Trees. Proceedings of the14th Meeting of the Canadian Tree Improvement Association, Part II, 99–105. Search in Google Scholar

Critchfield WB (1986) Hybridization and classification of the white pines (Pinus section Strobus). Taxon 35: 647–656. https://doi.org/10.2307/122160610.2307/1221606 Search in Google Scholar

Colombo P, Marceno C (1990) Númeroscromosomáticos de plantasoccidentales. 539-550. Anales Jard. Bot. Madrid 47: 167–174. Search in Google Scholar

Comai L (2005) The advantages and disadvantages of being a polyploid. Nature Review Genetics. https://doi.org/10.1038/nrg171110.1038/nrg171116304599 Search in Google Scholar

Contreras RN (2012) A simple chromosome doubling technique is effective for three species of Cupressaceae. HortScience 47: 712-714. https://doi.org/10.21273/hortsci.47.6.71210.21273/HORTSCI.47.6.712 Search in Google Scholar

Contreras RN, Ruter JM, Schwartz BM (2010) Oryzaline induced tetraploidy in Cryptomeria japonica (Cupressaceae). HortScience 45: 316-319. https://doi.org/10.21273/hortsci.45.2.31610.21273/HORTSCI.45.2.316 Search in Google Scholar

Cui L, Wall PK, Leebens-Mack JH et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Research 16: 738-749. https://doi.org/10.1101/gr.482560610.1101/gr.4825606147985916702410 Search in Google Scholar

Cutler HC (1939) Monograph of the North American species of the genus Ephedra. Annals of Missouri Botanic Garden 26: 373-428. https://doi.org/10.2307/239429910.2307/2394299 Search in Google Scholar

De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK (2017) Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 34:1363–1377. https://doi.org/10.1093/molbev/msx06910.1093/molbev/msx069543508528333233 Search in Google Scholar

De Luc A, Adams RA, Zhong M (1999) Using random amplification of polymorphic DNA for a taxonomic reevaluation of Pfitzer Juniperus. Hort-Science34:1123–1125. https://doi.org/10.21273/hortsci.34.6.112310.21273/HORTSCI.34.6.1123 Search in Google Scholar

Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biology 3: e314. https://doi.org/10.1371/journal.pbio.003031410.1371/journal.pbio.0030314119728516128622 Search in Google Scholar

Delevoryas T (1980) Polyploidy in gymnosperms. In: Polyploidy-Biological Relevance. Lewis W.H. (Ed.). Plenum Press, New York, pp. 215-218. https://doi.org/10.1007/978-1-4613-3069-1_1210.1007/978-1-4613-3069-1_12550825 Search in Google Scholar

Douhovnikoff V, Dodd RS (2011) Lineage Divergence in Coast Redwood (Sequoia sempervirens), detected by a New Set of Nuclear Microsatellite Loci. Am. Midl. Nat. 165:22–37. https://doi.org/10.1674/0003-0031-165.1.2210.1674/0003-0031-165.1.22 Search in Google Scholar

Drewry A (1988) G banded karyotype in Pinus resinosa Ait. Silvae Genetica 37: 218-221. Search in Google Scholar

El Maataoui M, Pichot C (1999) Nuclear and cell fusion cause polyploidy in the megagametophyte of common cypress, Cupressus sempervirens L. Planta 208: 345–351. https://doi.org/10.1007/s00425005056810.1007/s004250050568 Search in Google Scholar

El Maataoui M, Pichot C (2001) Microsporogenesis in endangered species Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta 213: 543-549. https://doi.org/10.1007/s00425010053110.1007/s00425010053111556786 Search in Google Scholar

Evans GE, Rasmussen HP (1971) Chromosome counts in three cultivars of Juniperus L. Botanical Gazette 132:259-262. https://doi.org/10.1086/33658910.1086/336589 Search in Google Scholar

Fagerlind F (1941) Bau und Entwicklung der Gnetum-Gametophyten. Kongl. Svenska Vetensk. Akad. Handl. 19, 1–55. Search in Google Scholar

Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch I, Adams RP, Daghar Kharrat MB (2019a) Polyploidy in the genus Juniperus: and unexpectedly high rate. Frontiers in Plant Science 10: Article 676. https://doi.org/10.3389/fpls.2019.0067610.3389/fpls.2019.00676654100631191584 Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Adams RP, DagharKharrat MB, Robert T (2019b) Genome size variation and polyploidy in the geographical range of Juniperus sabina L. (Cupressaceae). Botany Letters. https://doi.org/10.1080/23818107.2019.1613262.10.1080/23818107.2019.1613262 Search in Google Scholar

Farhat P, Takvorian N, Avramidou M, Garraud L, Adams RP, Siljak-Yakovlev S, Daghar Kharrat MB, Robert T (2020a) First evidence for allotriploid hybrids between Juniperus thurifera and J. sabina in a sympatric area in the French Alps. Annals of Forest Science 77: 93. https://doi.org/10.1007/s13595-020-00969-710.1007/s13595-020-00969-7 Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Valentin N, Fabregat C, Lopez-Udias S, Salazar-Mendiaz C, Altarejos J, Adams RP (2020b) Gene flow between diploid and tetraploid junipers-two contrasting evolutionary pathways in two Juniperus populations. BMC Evolutionary Biology 20: 148. https://doi.org/10.1186/s12862-020-01688-310.1186/s12862-020-01688-3765018233167862 Search in Google Scholar

Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, Kew. Search in Google Scholar

Fawcett JA, Maere S, VandePeer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous Tertiary extinction event. Proceedings National Academy of Sciences USA 106: 5737–5742. https://doi.org/10.1073/pnas.090090610610.1073/pnas.0900906106266702519325131 Search in Google Scholar

Fernandes A (1936) Sur la caryologie de Welwitschia mirabilis Hook. Biol.Soc. Broteriana 11: 267-282. Search in Google Scholar

Florin R (1932) Die Chromosomenzahlen bei Welwitschia und einigen Ephedra. Arten.Svensk Bot.Tidsk 26: 205-214. Search in Google Scholar

Foster CB, Afonin SA (2005) Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. Journal of the Geological Society 162, 653–659. https://doi.org/10.1144/0016-764904-04710.1144/0016-764904-047 Search in Google Scholar

Fournier G, Pages N, Fournier C, Callan G (1991) Comparisons of volatile leaf essential oils of various Juniper pfitzeriana. Pharmaciea Acta Helvetica 66: 74-75. Search in Google Scholar

Fozdar BS, Libby WJ (1968) Chromosomes of Sequoia sempervirens; 8-hydroxyquinoline-castor oil pretreatment for improving preparation. Stain Technol. 43: 97-100. https://doi.org/10.3109/1052029680911505010.3109/105202968091150504870872 Search in Google Scholar

Goldblatt P (1984) Index to Plant Chromosome Numbers, 1979-1981. Monogr. Syst. Bot. Missouri Bot. Gard. 8: 1–427. Search in Google Scholar

Gorelick R, Olson K (2011) Is lack of cycad (Cycadales) diversity a result of a lack of polyploidy? Botanical J. Linn.Soc. 165:156-167. https://doi.org/10.1111/j.1095-8339.2010.01103.x10.1111/j.1095-8339.2010.01103.x Search in Google Scholar

Guan R, Zhao Y, Zhang H, Fan G, Liu X et al. (2016) Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49. https://doi.org/10.1186/s13742-016-0154-110.1186/s13742-016-0154-1511889927871309 Search in Google Scholar

Gurzenkov NN (1973) Studies of chromosome numbers in plants from the south of the Soviet far east. Komarov Lectures 20: 47-61 (in Russian). Search in Google Scholar

Hair JB (1968) The chromosomes of the Cupressaceae. 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 272-284. https://doi.org/10.1080/0028825x.1968.1042881310.1080/0028825X.1968.10428813 Search in Google Scholar

Hall M, Mukherjee A, Webster R (1973) Chromosome counts in cultivated Junipers. Journal of Arnold Arboretum 54: 369-376.10.5962/p.184526 Search in Google Scholar

Hall M, Mukherjee A, Crowley WR (1979) Chromosome numbers of cultivated junipers. Botanical Gazette 140: 364-370. https://doi.org/10.1086/33709810.1086/337098 Search in Google Scholar

Hajibabaei M, Xia J, Drouin G (2006) Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. Molecular Phylogenetics and Evolution 40: 208–217. https://doi.org/10.1016/j.ympev.2006.03.00610.1016/j.ympev.2006.03.006 Search in Google Scholar

Hirayoshi I, Nakamura Y (1943) Chromosome number in Sequoia sempervirens. Plant & Animal 1: 73-75 (in Japanese). Search in Google Scholar

Hizume M (1989) Karyomorphological studies in twelve species in the Taxodiaceae with special reference to cytotaxonomical position of Sciadopitys verticillata. Mem. Fac. Educ. Ehime Univ., Ser. 3, Nat. Sci. 9: 7–32. Search in Google Scholar

Hizume M (1997) Chromosomes of Ginkgo biloba In: Ginkgo biloba a global treasure from biology to medicine, Hori T, Ridge RW, Tulecke PD, Tredici J, Tremouillaux-Guiller J, Tobe H eds., Springer Verlag Tokyo pp 109-119. Search in Google Scholar

Hizume M, Fujiwara M (2016) Fluorescent chromosome banding patterns of several species in the Cupressaceae sensu strict. Chromosome Botany 11 : 1-8. https://doi.org/10.3199/iscb.11. Search in Google Scholar

Hizume M, Tominaga K (2016) Fluorescent band pattern of chromosomes in Ephedra americana var. andina, Ephedraceae. Chromosome Botany 11: 27-30. https://doi.org/10.3199/iscb.11.2710.3199/iscb.11.27 Search in Google Scholar

Hizume M, Abe KK,Tanaka A (1988) Fluorescent choromosome bandings in the Taxodiaceae. La Kromosomo II-50: 1609-1619. Search in Google Scholar

Hizume M, Kaneko K, Miyake T (2014) A method for the preparation of meiotic chromosomes of conifers and its applications. Chromosome Botany 9: 83-88. https://doi.org/10.3199/iscb.9.8310.3199/iscb.9.83 Search in Google Scholar

Hizume M, Gu Z, Yue Z, Kondo K (1993) Karyomorphological studies on Gnetum montana collected in Yunnan China Chromosome Information Service 54:23-25. Search in Google Scholar

Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307-311. https://doi.org/10.1508/cytologia.66.30710.1508/cytologia.66.307 Search in Google Scholar

Hunziker JH (1953) Numero de cromosomas de varias species sudamericanas de Ephedra. Rev.Argent Agronom 20: 141-143. Search in Google Scholar

Hunziker JH (1955) Morfologiacromosomica de nueveespecies argentinasdelgenero “Ephedra”. Rev. Invest. Agr. 9: 201-209. Search in Google Scholar

Hyun SK (1953) Induction of polyploidy in pines by means of colchicine treatment.Z. Forstgenetik u. Forstpflanzenzüchtung3: 25-33. Search in Google Scholar

Ickert Bond SM, Rydin C, Renner SS (2003) Pollen dimorphism in Ephedra L. (Ephedraceae). Review of Palaeobotany and Palynology 124: 325-334. https://doi.org/10.1016/s0034-6667(03)00002-210.1016/S0034-6667(03)00002-2 Search in Google Scholar

Ickert-Bond SM, Sousa A, Ya M, Pellicer J, Leitch I (2014) The evolution of genome size in gymnosperm genus Ephedra: Flow cytometry and new chromosome counts support high levels of polyploidy. Botany New Frontiers in Botany, The Boise Centre-Boise Idaho July 26-30, 2014. Search in Google Scholar

Ickert-Bond SM, Sousa A, Ya M, Loera I, Metzgar J, Pellicer J, Hidalgo O, Leitch I (2020) Polyploidy in gymnosperms- Insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Molecular Phylogenetics and Evolution 147: 106786. https://doi.org/10.1016/j.ympev.2020.10678610.1016/j.ympev.2020.10678632135310 Search in Google Scholar

Illies ZM (1951) Colchicineversuche an Larix decidua Miller und Picea abies Karst. Z. Forstgenetik u. Forstpflanzenzüchtung1: 36-39. Search in Google Scholar

Illies ZM (1953) Keimlingsabnormalitatan bei Picea abies (L.) Karst. Z. Forstgenetik u. Forstpflanzenzüchtung 2: 28-32. Search in Google Scholar

Illies ZM (1957) Zytologische Beobachtungenaneiner 7 jährigen Co-Generation von Lärche. Silvae Genetica 6:151–152. Search in Google Scholar

Illies ZM (1958) Polysomatie in Meristem von Einzelbaumsaarten bei Picea abies. Silvae Genetica 7: 94-97 Search in Google Scholar

Illies ZM (1966a) Die Variation unbalanzierter Chromosomenzahlen im Knospenmeristem fünf aufeinanderfolgenderAstjahrgänge bei aneuploiden C1-Lärchen.Silvae Genetica15: 133–135. Search in Google Scholar

Illies ZM (1966b) The development of an euploidy in somatic cells of experimentally produced triploid larches Heredity 21: 379-385. https://doi.org/10.1038/hdy.1966.3910.1038/hdy.1966.39 Search in Google Scholar

Illies ZM (1969) Two aneuploid generations of larch hybrids deriving from colchicines induced Larix sp. Proc.Second World Consultation on Forest Tree Breeding, 5p. Search in Google Scholar

International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763–768. https://doi.org/10.1038/nature0874710.1038/nature0874720148030 Search in Google Scholar

Jensen H, Levan A (1941) Colchicine induced tetraploidy in Sequoiadendron giganteum. Hereditas 27: 220-224. https://doi.org/10.1111/j.1601-5223.1941.tb03257.x10.1111/j.1601-5223.1941.tb03257.x Search in Google Scholar

Jiao Y, Li J, Tang H, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient Genome Duplication in Monocots.The Plant Cell 26: 2792–2802. https://doi.org/10.1105/tpc.114.12759710.1105/tpc.114.127597414511425082857 Search in Google Scholar

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE et al. (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100. https://doi.org/10.1038/nature0991610.1038/nature0991621478875 Search in Google Scholar

Johnsson H (1975) Observations on induced polyploidy in some conifers (Pinus silvestris, P. contorta, Picea abies, and Larix siberica. Silvae Genetica 24: 62-68 Search in Google Scholar

Kanezawa R (1949) Polyploids appeared in twin seedling of forest trees. Journal of Japanese Forest Society 31: 22-24 (in Japanese). Search in Google Scholar

Kanezawa R (1951) Induced tetraploidy in Japanese cypress (Chamaecyparis obtusa Endl.). Bul. of the Tokyo Univ. For. 39:21–30. Search in Google Scholar

Kawatani T, Fujita S, Ohno T, Kuboki N, Hoshizaki K (1959) On the alkaloidal content of ephedras cultivated at Kasukabe. J. Pharmaceutical Soc. Jap. 79: 392-393. https://doi.org/10.1248/yakushi1947.79.3_39210.1248/yakushi1947.79.3_392 Search in Google Scholar

Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13: 24-39. https://doi.org/10.1111/j.1558-5646.1959.tb02991.x10.1111/j.1558-5646.1959.tb02991.x Search in Google Scholar

Khoshoo TN (1979) Cytogenetics in relation to plant evolution and improvement. In: Khoshoo TN, Nair PKK, eds. Progress in Plant Research.Vol. 2. Silver Jubilee Publication, National Botanical Research Institute; 1979. pp. 1–74. Search in Google Scholar

Kiellander CL (1950) Polyploidy in Picea abies. Hereditas 36: 513-516. Search in Google Scholar

Kitani Y, Zhu S, Batkhuu J, Sanchir C, Komatsu K (2011) Genetic diversity of Ephedra plants in Mongolia inferred from internal transcribed spacer sequence of nuclear ribosomal DNA. Biol. Pharm. Bull. 34:717-726. https://doi.org/10.1248/bpb.34.71710.1248/bpb.34.71721532163 Search in Google Scholar

Kondo T (1988) Variation of karyotype in plus tree clones of Japanese cedar, Cryptomeria japonica. Acta Radiobotanica et Genetica 7: 1-48 Search in Google Scholar

Kondo T, Hizume M (2000) Chromosomal variation and its application for genome study in Japanese cedar, Cryptomeria japonica. In: Cytogenetic studies and outlook on the future, eds: Guttenberger H, Borzan Z, Schlarbaum S E, Hartman P V. Arbora Publishers Zvole, Slovakia, pp. 89-93. Search in Google Scholar

Kondo T, Hizume M, Kubota R (1985) Variation of fluorescent chromosome bands of Cryptomeria japonica. J. Jap. Forest. Soc. 67: 184–189. Search in Google Scholar

Kong H, Chen Q, Ma J (2001) A study on karyotypes of two species in Ephedra. J. Lanzhou Univ., Nat. Sci. 37: 100–103. Search in Google Scholar

Kozhevnikova ZV, Kozhevnikov AE (2012) IAPT/IOPB Chromosome Data 13. Taxon 61: 895-897. https://doi.org/10.1002/tax.61402310.1002/tax.614023 Search in Google Scholar

Krapovikas AMF De (1954) Complemento cromosomico de species austro americanas de Ephedra. Rev. Argent. Agron. 21: 43-45. Search in Google Scholar

Kurschner WM, Batenburg SJ, Mander L (2013) Aberrant Classopolis pollen reveals evidence for unreduced (2n) pollen during the Triassic-Jurassuc transition. Proceedings Royal Society B 280: 20131708. https://doi.org/10.1098/rspb.2013.170810.1098/rspb.2013.1708375798823926159 Search in Google Scholar

Land WGJ (1913) Vegetative reproduction in an Ephedra. Botanical Gazette 55: 439-445. https://doi.org/10.1086/33108610.1086/331086 Search in Google Scholar

Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA et al.(2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574: 679-685. https://doi.org/10.1038/s41586-019-1693-210.1038/s41586-019-1693-2687249031645766 Search in Google Scholar

Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629–646. https://doi.org/10.1111/j.1469-8137.2012.04105.x10.1111/j.1469-8137.2012.04105.x22432525 Search in Google Scholar

Leitch IJ, Hanson L, Winfield M, Parker J, Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms Annals of Botany 88: 843-849. https://doi.org/10.1006/anbo.2001.152110.1006/anbo.2001.1521 Search in Google Scholar

Leitch IJ, Dodsworth S (2017) Endopolyploidy in Plants. In: eLS. John Wiley & Sons, Ltd:Chichester. https://doi.org/10.1002/9780470015902.a0020097.pub210.1002/9780470015902.a0020097.pub2 Search in Google Scholar

Li LC, Fu YX (1996) Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Phytotax. Sin. 34: 117–123. Search in Google Scholar

Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS (2015) Early genome duplications in conifers and other seed plants. Science Advances 1: e1501084. https://doi.org/10.1126/sciadv.150108410.1126/sciadv.1501084468133226702445 Search in Google Scholar

Li Z, Barker MS (2019) Inferring putative ancient whole genome duplications in the 1000 plants (1KP) initiative: access to gene family phylogenies and age distributions. Giga Science:9:1-11. https://doi.org/10.1093/gigascience/giaa00410.1093/gigascience/giaa004701144632043527 Search in Google Scholar

Liu H, Cao F, Yin T, Chen Y (2017) A highly dense genetic map for Ginkgo biloba constructed using sequence based markers. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.0104110.3389/fpls.2017.01041547129828663754 Search in Google Scholar

Madlung A (2013) Polyploidy and its effect on evolutionary success: old question revisited with new tools. Heredity 110: 99-104. https://doi.org/10.1038/hdy.2012.7910.1038/hdy.2012.79355444923149459 Search in Google Scholar

Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424. https://doi.org/10.1126/science.264.5157.42110.1126/science.264.5157.42117836906 Search in Google Scholar

Mathew PM, Mathew J, Christopher C, Haridas P (2014a) Karyomorphological studies in conifers. Journal of Cytology & Genetics 15 (NS) : 107-121 Search in Google Scholar

Mathew PM, Mathew J, Christopher C, Haridas P (2014b) Cytological studies with reference to karyomorphology of Gnetum and Ephedra. Journal of Cytology & Genetics 15 (NS) : 123-134 Search in Google Scholar

Matsuda K (1980) Triploids and meiosis in Cryptomeria japonica. Forest Tree Breeding 116: 23-24. Search in Google Scholar

Matsuda K, Miyajima H (1977) On the triploid of Cryptomeria japonica D. Don. Journal of Japanese Forest Society 59: 148-150. Search in Google Scholar

McElwain JC, Steinthorsdottir M (2017) Paleoecology ploidy paleoatmospheric composition and developmental biology: A review of the multiple uses of fossil stomata. Plant Physiology 174: 650-664. https://doi.org/10.1104/pp.17.0020410.1104/pp.17.00204546206428495890 Search in Google Scholar

Mehra PN (1946a) A study of the karyotype and the occurrence of diploid male gametophyte in some species of the genus Ephedra. Proceedings of National Academy of Sciences India 16: 259- 291 Search in Google Scholar

Mehra PN (1946b) Method of formation of diploid pollen and development of male gametophyte in Ephedra saxatilis Royle. Jour. Indian Bot. Soc. (Iyengar Comm. Vol.) pp. 121-132. Search in Google Scholar

Mehra PN (1976) Conifers of the Himalayas with particular reference to the Abies and Juniperus complexes. Nucleus 19:123-129. Search in Google Scholar

Mehra PN (1988) Indian Conifers, Gnetophytes and Phylogeny of Gymnosperms. Panjab University, Chandigarh Search in Google Scholar

Mehra PN, Khoshoo TN (1956a) Cytology of conifers I. Journal of Genetics 54:165-180. https://doi.org/10.1007/bf0298170810.1007/BF02981708 Search in Google Scholar

Mehra PN, Rai KS (1957) Cytology of Gnetum ula. Journal of Genetics 55:394-396. https://doi.org/10.1007/bf0298165210.1007/BF02981652 Search in Google Scholar

Menon M, Bagley JC, Friedline CJ, et al. (2018) The role of hybridization during ecological divergence of southwestern white pine (Pinus strobiformis) and limber pine (P. flexilis). Molecular Ecology 27:1245–1260. https://doi.org/10.1111/mec.1450510.1111/mec.1450529411444 Search in Google Scholar

Menon M, Landguth E, Leal-Saenz A, et al. (2020) Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evolutionary Applications 13: 195–209. https://doi.org/10.1111/eva.1279510.1111/eva.12795693558831892952 Search in Google Scholar

Mercier R, Mezard C, Jenczewski E Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annual Review of Plant Biology 66:297-327. https://doi.org/10.1146/annurev-arplant-050213-03592310.1146/annurev-arplant-050213-03592325494464 Search in Google Scholar

Mergen F (1958) Natural polyploidy in slash pine. Forest Science 4: 283-295. Miller CN (1977) Mesozoic conifers. Botanical Review 43: 217-280. https://doi.org/10.1007/bf0286071810.1007/BF02860718 Search in Google Scholar

Mukherjee A, Hall M T(1979) In IOPB chromosome number reports LXIII. Taxon 28:269-270. Search in Google Scholar

Muratova EN (1995) Chromosome numbers in some species of the Pinaceae family. Bot. Žhurn. (Moscow & Leningrad) 80: 115. Search in Google Scholar

Muratova NE (1997) Studies on nucleolar chromosomes in representatives of Pinaceae Lindl. In: Cytogenetic studies of forest trees and shrub species ed. Borzan Z & Schlarbaum S E, Proceedings of the first IUFRO cytogenetics Working Party S2.04-08 Symposium Sept. 8-11 1993 pp 45-72. Search in Google Scholar

Muratova EN, Vladimirova OS, Sedelnikova TS (2001) Chromosome numbers of some gymnosperms. Bot. Žhurn. (Moscow & Leningrad) 86: 143–144. Search in Google Scholar

Murín A, Májovský J (1979) Karyological Study of slovakian flora I. - Acta Fac. Rerum Nat. Univ. Comen., Bot. 27:127-133., IAPT/IOPB Chromosome Data 13 Search in Google Scholar

Nagano K, Umeda T, Toda Y (2000) Karyomorphological study of Juniperus In: Cytogenetics of forest trees and shrubs, Review, Present Status and Outlook for future. Ed. Guttenberger H, Borzan Z, Schlarbaum SE, Hartman TPV, Spl issue of the Forest Genetics Arbora Publishers, Zvolen, Slovakia, pp. 143-159. Search in Google Scholar

Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y (2007) Karyo-type analysis of three Juniperus Species using fluorescence in situ hybridization (FISH) with two Ribosomal RNA Genes. Cytologia 72: 37–42. https://doi.org/10.1508/cytologia.72.3710.1508/cytologia.72.37 Search in Google Scholar

Nakata M, Oginuma K (1989) Cytological studies on phanerogams in southern Peru, II. Chromosomes of Tetraglochin strictum (Rosaceae) and Ephedra americana (Ephedraceae). Bull. Natl. Sci. Mus., Tokyo, B 15: 63–66. Search in Google Scholar

Nishimura S (1960) Chromosome numbers of polyembryonic seedlings of Pinus thunbergii Parl. J. Jap.For. Sci. 42:263-264. Search in Google Scholar

Nystedt B, Street NR, Wetterborn A, Zuccolo A, Lin WC et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584.10.1038/nature1221123698360 Search in Google Scholar

O’Hara KL, Cox LE, Nikolaeva S, Bauer JJ, Hedges R (2017) Regeneration dynamics of coast redwood, a sprouting conifer species: a review with implications for management and restoration. Forests8: 144. https://doi.org/10.3390/f805014410.3390/f8050144 Search in Google Scholar

Ohri D (2013) Cytogenetics of domestication and improvement of garden gladiolus and bougainvillea. Nucleus 56: 149-153. https://doi.org/10.1007/s13237-013-0091-710.1007/s13237-013-0091-7 Search in Google Scholar

Ohri D (2015) How small and constrained is the genome size of angiosperm woody species. Silvae Genetica 64: 20-32. https://doi.org/10.1515/sg-2015-000210.1515/sg-2015-0002 Search in Google Scholar

Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Systematics and Evolution 153: 119–132. https://doi.org/10.1007/bf0098942110.1007/BF00989421 Search in Google Scholar

Ohri D, Zadoo SN (1986) Cytogenetics of cultivated bougainvilleas IX. Precocious centromere division and origin of polyploidy taxa. Plant Breed. 97:227–31. https://doi.org/10.1111/j.1439-0523.1986.tb01057.x10.1111/j.1439-0523.1986.tb01057.x Search in Google Scholar

Olson DFJ, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood (Agriculture handbook654). In Silvics of North America, Volume 1. Conifers; USDA Forest Service: Washington, DC, USA,pp. 541–551. Search in Google Scholar

Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annual Review of Genetics 34:401–437. https://doi.org/10.1146/annurev.genet.34.1.40110.1146/annurev.genet.34.1.40111092833 Search in Google Scholar

Paterson AH, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556. https://doi.org/10.1038/nature0772310.1038/nature0772319189423 Search in Google Scholar

Pearson HHW (1929) Gnetales. Cambridge: Cambridge University Press. Search in Google Scholar

Pichot C, Maataoui M (2000) Unreduced diploid nuclei in Cupressus dupreziana Z. Camus pollen. Theoretical and Applied Genetics 101: 574-579. https://doi.org/10.1007/s00122005151810.1007/s001220051518 Search in Google Scholar

Pimenov AV, Sedelnikova TS (2002) Chromosome numbers of some Pinaceae from western and middle Siberia. Bot. Žhurn. (Moscow & Leningrad) 87: 136–137. Search in Google Scholar

Premoli AC, Kitzberger T, Veblen TT (2000) Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genetics 1: 57–66. https://doi.org/10.1023/a:101018160337410.1023/A:1010181603374 Search in Google Scholar

Price H, Sparrow A, Nauman A (1973) Evolutionary and developmental considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms. Brookhaven Symposia in Biology 25: 390-421. Search in Google Scholar

Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annual Review of Ecology and Systematics 29: 467-501. https://doi.org/10.1146/annurev.ecolsys.29.1.46710.1146/annurev.ecolsys.29.1.467 Search in Google Scholar

Rastogi S, Ohri D (2020a) Karyotype evolution in cycads. Nucleus 63: 131-141. https://doi.org/10.1007/s13237-019-00302-210.1007/s13237-019-00302-2 Search in Google Scholar

Rastogi S, Ohri D (2020b) Chromosome numbers in gymnosperms-an update. Silvea Genetica 69: 13-19. https://doi.org/10.2478/sg-2020-000310.2478/sg-2020-0003 Search in Google Scholar

Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: Polyploidy and crop plants. American Journal of Botany 101: 1711 – 1725. https://doi.org/10.3732/ajb.140011910.3732/ajb.140011925090999 Search in Google Scholar

Ren GP, Abbott RJ, Zhou YF, Zhang LR, Peng YL, Liu JQ (2012) Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China. Heredity (2012) 108, 552–562. https://doi.org/10.1038/hdy.2011.12310.1038/hdy.2011.123333068422187083 Search in Google Scholar

Resende F (1937) Planta 26: 757-807. Vide Darlington and Wylie (1955).10.1007/BF01915460 Search in Google Scholar

Rice A, Smarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I (2019) The global biogeography of polyploidy plants. Nature Ecology & Evolution 3: 265-273. https://doi.org/10.1038/s41559-018-0787-910.1038/s41559-018-0787-930697006 Search in Google Scholar

Rogers DL (1997) Inheritance of allozymes from seed tissues of hexaploid gymnosperm, Sequoia sempervirens (D.Don) Endl.) (coast redwood). Heredity 78: 166-175. https://doi.org/10.1038/hdy.1997.2410.1038/hdy.1997.24 Search in Google Scholar

Romo A, Hidalgo O, Boratynski A, obierajska K, Jasinka A, Vallès J, Garnatje T (2013) Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera L. Tree Genetics and Genomes 9: 587-599. https://doi.org/10.1007/s11295-012-0581-910.1007/s11295-012-0581-9 Search in Google Scholar

Roodt D, Lohaus R, Sterck L, Swanepoel R, Van der Peer Y, Mizrachi E (2017) Evidence for an ancient whole genome duplication in the cycad lineage. Plos One 12: e184454. https://doi.org/10.1371/journal.pone.018445410.1371/journal.pone.0184454559096128886111 Search in Google Scholar

Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z, Van der Peer Y, Persson S (2017) Revisiting ancestral polyploidy in plants. Science Advances 3: e1603195. https://doi.org/10.1126/sciadv.160319510.1126/sciadv.1603195549810928695205 Search in Google Scholar

Sasaki Y (1982) Triploids in plus trees in Cryptomeria japonica and Chamaecyparis obtusa. Res.Rep. Oita Pref. For. Res. Inst. 5: 5-13. Search in Google Scholar

Sax K, Sax HJ (1933) Chromosome number and morphology in the conifers. Journal of Arnold Arboretum 14: 356-375. https://doi.org/10.5962/bhl.part.995910.5962/bhl.part.9959 Search in Google Scholar

Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nature Plants 2: 16115. https://doi.org/10.1038/nplants.2016.11510.1038/nplants.2016.11527479829 Search in Google Scholar

Saylor, LC, Simons HA (1970) Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35: 294-303. https://doi.org/10.1508/cytologia.35.29410.1508/cytologia.35.294 Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1975) The chromosome study of giant sequoia, Sequoiadendron giganteum. Silvae Genetica 24: 23-26. Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1984a) A chromosome study of coast redwood, Sequoia sempervirens D. (Don) Endl. Silvae Genetica33: 56-62 Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1984b) Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics & Evolution 147: 29-54. https://doi.org/10.1007/bf0098457810.1007/BF00984578 Search in Google Scholar

Schlarbaum SE, Tsuchiya T, Johnson LC (1984) The chromosomes and relationship of Metasequoia and Sequoia (Taxodiaceae): an update. Journal of Arnold Arboretum 65: 251-254.10.5962/p.185921 Search in Google Scholar

Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytologist 211: 186-193. https://doi.org/10.1111/nph.1393010.1111/nph.1393026996245 Search in Google Scholar

Sedelnikova TS, Muratova EN (1999) Cytological study of „witches‘-broom“ type of Pinus sylvestris (Pinaceae) from a bog. Citologija 41: 1082. Search in Google Scholar

Sedelnikova TS, Muratova EN (2001) Karyological studies of „witches‘broom“ type of Pinus sylvestris (Pinaceae) from a bog. Bot. Žhurn. (Moscow & Leningrad) 86: 50–59. Search in Google Scholar

Sedelnikova TS, Pimenov AV (2003) Chromosome mutations in marshland and dry valley populations of Abies sibirica Ledeb. Citologija 45: 515–520. Search in Google Scholar

Sedelnikova TS, Muratova EN, Pimenov AV (2011) Variability of chromosome numbers in gymnosperms. Biology Bulletin Reviews 1: 100-109. https://doi.org/10.1134/s207908641102008310.1134/S2079086411020083 Search in Google Scholar

Smarda P, Vesely P, Smarda Y, Bures P, Knapek O, Chytra M (2016) Polyploidy in a living fossil Ginkgo biloba. New Phytologist 212:11-14. https://doi.org/10.1111/nph.1406210.1111/nph.1406227265838 Search in Google Scholar

Smarda P, Horova L, Knapek O, Dieck H, Dieck M, Razna K, Hrubik P, Orloci L, Papp L, Vesela K, Vesely P, Bures P (2018) Multiple haploids triploids and tetraploids found in modern day `living fossil’ Ginkgo biloba. Horticulture Research 5:55. https://doi.org/10.1038/s41438-018-0055-910.1038/s41438-018-0055-9616584530302259 Search in Google Scholar

Soltis DE, Albert VA, Leebens-Mack J, Soltis PS (2009) Polyploidy and angio-sperm diversification. American Journal of Botany 96:336-348. https://doi.org/10.3732/ajb.080007910.3732/ajb.080007921628192 Search in Google Scholar

Somego M, Ito S, Kanezawa T (1981) Natural triploid plants found in plus tree of sugi (Cryptomeria japonica D.Don.). Trans 33rd Mtg. Kanto Branch Jp. For. Soc. 81-82. Search in Google Scholar

Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95-98. https://doi.org/10.1126/science.108.2796.9510.1126/science.108.2796.9517808724 Search in Google Scholar

Stiff ML (1951) A naturally occurring triploid juniper. Va. J. Sci. 2: 317. Search in Google Scholar

Suyama Y, Mukai Y, Kondo T (1996) Assignment of RFLP linkage groups to their respective chromosomes in sugi (Cryptomeria japonica). Theoretical & Applied Genetics 92: 292-296. https://doi.org/10.1007/bf0022367110.1007/BF0022367124166249 Search in Google Scholar

Syrach-Larsen C, Westergaard M (1938) A triploid hybrid between Larix decidua Mill. And Larix occidenatlis Nutt. J. Genet. 36: 523-530. Search in Google Scholar

Tarnavarschi IT, Lungeanu I (1970a) Chromosomenzahlen von einigen in Rumanian wildwachsenden Anthophyten. Rev. Roum. Biol., Bot. 15: 381-383. Search in Google Scholar

Tarnavarschi IT, Lungeanu R (1970b) In IOPB chromosome number reports XX-VIII. Taxon 19: 608-610. https://doi.org/10.1002/j.1996-8175.1970.tb03062.x10.1002/j.1996-8175.1970.tb03062.x Search in Google Scholar

Terasaka O (1982) Nuclear differentiation of male gametophytes in Gymnosperms. Cytologia 47: 27–46. https://doi.org/10.1508/cytologia.47.1_2710.1508/cytologia.47.1_27 Search in Google Scholar

The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc.161: 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x10.1111/j.1095-8339.2009.00996.x Search in Google Scholar

The Plant List (2010) Version 1 Published on the Internet. http://www.theplantlist.org/ Search in Google Scholar

Toda E, Okamoto T (2016) Formation of triploid plants via possible polyspermy. Plant Signaling & Behavior 2016, VOL.11, NO.9, e1218107 (5pages). http://dx.doi.org/10.1080/15592324.2016.121810710.1080/15592324.2016.1218107505846027617495 Search in Google Scholar

Toda Y (1996) Karyomorphological studies of the Taxodiaceae. Forest Science 3: 175-180. Search in Google Scholar

Toda Y, Sotoyama S (1972) Variants of woods. Iden 26: 50-54. Search in Google Scholar

Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) from somatic embryogenesis and identification of some factors involved in genetic instability. American Journal of Botany 86: 1373-1381. https://doi.org/10.2307/265692010.2307/2656920 Search in Google Scholar

Vallès V, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetic studies in western Mediterranean Juniperus (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. Tree Genetics & Genomes 11:43. https://doi.org/10.1007/s11295-015-0860-310.1007/s11295-015-0860-3 Search in Google Scholar

Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:411–424. https://doi.org/10.1038/nrg.2017.2610.1038/nrg.2017.2628502977 Search in Google Scholar

Van Drunen WE, Husband BC (2019) Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms. New Phytologist (2019) 224: 1266–1277. https://doi.org/10.1111/nph.1599910.1111/nph.1599931215649 Search in Google Scholar

Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of southern South America. In: Ecologyof Southern Conifers(eds. En-right NJ, Hill RS), pp. 120–155. Melbourne University Press, Carlton, Victoria, Australia. Search in Google Scholar

Wakamiya I, Price HJ, Messina MG, Newton RJ (1996) Pine genome diversity and water relations. Physiologia Plantarum 96: 13–20. https://doi.org/10.1034/j.1399-3054.1996.960103.x10.1034/j.1399-3054.1996.960103.x Search in Google Scholar

Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R et al. (2018) A genome for gnetophytes and early evolution of seed plants Nature Plants 4: 82-89. https://doi.org/10.1038/s41477-017-0097-210.1038/s41477-017-0097-229379155 Search in Google Scholar

Wang BS, Mao JF, Gao J, Zhao W, Wang XR (2011) Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Mol Ecol 20: 3796– 3811. https://doi.org/10.1111/j.1365-294x.2011.05157.x10.1111/j.1365-294X.2011.05157.x21689188 Search in Google Scholar

Wendt T (1993) A new variety of Ephedra torreyana (Ephedraceae) from West Texas and Chihuahua, with notes on hybridization in the E. torreyana complex. Phytologia 74: 141-150. Search in Google Scholar

Wesche K, Ronnenberg K, Hensen I (2005) Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi arid southern Mongolia. Journal of Arid Environment 63: 390-405. https://doi.org/10.1016/j.jaridenv.2005.03.01410.1016/j.jaridenv.2005.03.014 Search in Google Scholar

Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cyto-genetic and Genome Evolution 140: 137-150. https://doi.org/10.1159/00035172710.1159/000351727385992423796571 Search in Google Scholar

Williams CG (2009) Conifer reproductive biology. Springer, Dordrecht, Heidelberg, London, New York.10.1007/978-1-4020-9602-0 Search in Google Scholar

Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution 52: 498–511. https://doi.org/10.1016/j.ympev.2009.02.01110.1016/j.ympev.2009.02.01119249377 Search in Google Scholar

Winton LL (1964) Natural polyploidy in juvenile white and black spruce. Minnesota Forestry Notes Published as Sci. Jour. Ser. Paper No. 5452 of the Minn. Agri. Exp. Stn. Search in Google Scholar

Won H, Renner SS (2005) The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Molecular Phylogenetics and Evolution 36: 581-597. https://doi.org/10.1016/j.ympev.2005.03.01110.1016/j.ympev.2005.03.01116099382 Search in Google Scholar

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploidy speciation in vascular plants. Proceedings National Academy of Sciences USA. 106:13875–13879. https://doi.org/10.1073/pnas.081157510610.1073/pnas.0811575106272898819667210 Search in Google Scholar

Wu H, Ma Z, Wang M M, Qin A L, Ran J H, Wang XQ (2016) A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features.MolecularEcology 25: 1192-1210. https://doi.org/10.1111/mec.1353810.1111/mec.13538716840326800145 Search in Google Scholar

Wu H, Yu Q, Ran J-H, Wang X-Q (2020) Unbiased subgenome evolution in allotetraploid species of Ephedra and its implications for the evolution of large genomes in gymnosperms. Genome Biology and Evolution evaa 236. https://doi.org/10.1093/gbe/evaa23610.1093/gbe/evaa236790087533196777 Search in Google Scholar

Wu JL, Li S, Jiang H, Gao YH, Niu JY (2009) Slide preparing technique of mitotic chromosomes and application in karyotype technique of mitotic chromosomes and application in karyotype determination of Ephedra. China Journal of Chinese Materia Medica 34: 2725-2729. Search in Google Scholar

Wu S, Han B, Jiao Y (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant 13: 59-71. https://doi.org/10.1016/j.molp.2019.10.01210.1016/j.molp.2019.10.01231678615 Search in Google Scholar

Xu BS, Weng RF, Zhang MZ (1992) Chromosome numbers of Shanghai plants I. Invest. Stud. Nat. 12: 48–65. Search in Google Scholar

Yang ZY, Ran JH, Wang XQ (2012) Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64: 452–470. https://doi.org/10.1016/j.ympev.2012.05.00410.1016/j.ympev.2012.05.00422609823 Search in Google Scholar

Yousafzai FK, Kaff AI, Moore G (2010) The molecular features of chromosome pairing at meiosis: the polyploidy challenge using wheat as a reference. Functional & Integrative Genomics 10:147-156. https://doi.org/10.1007/s10142-010-0171-610.1007/s10142-010-0171-620422242 Search in Google Scholar

Zhou Z-Y (2009) An overview of fossil Ginkgoales. Palaeoworld 18(1-22): 206. https://doi.org/10.1016/j.palwor.2009.01.00110.1016/j.palwor.2009.01.001 Search in Google Scholar

Zinnai I, Chiba S (1951) (Naturally occurring tetraploids of Cryptomeria japonica) Ikushugaku Zasshi. Japanese Journal of Breeding 1:43-46.10.1270/jsbbs1951.1.43 Search in Google Scholar

Zinnai L (1952) Tetraploid plants in Japanese red pine (Pinus densiflora Sieb. Et Zucc.) discovered in transplant beds. J. Jap. For. Soc. 34: 185-187. Search in Google Scholar

Zonneveld BJM (2012) Conifer genome sizes of 172 species, covering 64 out of the 67 genera, range from 8 to 72 picogram. Nordic Journal of Botany 30: 490-502.10.1111/j.1756-1051.2012.01516.x Search in Google Scholar

Zwaenepoel A, Van der Peer Y (2019) Inference of ancient whole genome duplications and the evolution of the gene duplication and loss rate. Mol. Biol. Evol. 36: 1384-1404. https://doi.org/10.1093/molbev/msz08810.1093/molbev/msz08831004147 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo