À propos de cet article

Citez

[1] Pavlenko, D., Kondratiuk, E., Torba, Y., Vyshnepolskyi, Y., Stepanov, D. “Improving the efficiency of finishing-hardening treatment of gas turbine engine blades”. Eastern-European Journal of Enterprise Technologie 1 (12-115), pp. 31 – 37, 2022. DOI: 10.15587/1729-4061.2022.252292Search in Google Scholar

[2] Davim, J. P. (ed.) “Tribology for engineers: A practical guide”, Elsevier, 2011.Search in Google Scholar

[3] Kannan, S., Kui, L. “Experimental investigation of surface integrity during abrasive edge profiling of nickel-based alloy”, Journal of manufacturing processes 39, pp. 40 – 51, 2019. DOI: 10.1016/j.jmapro.2019.01.052Search in Google Scholar

[4] Stary, M., Novotny, F., Horak, M., et. al., “Summary of the properties and benefits of glass mechanically frosted with an abrasive brush”, Construction and Building Materials 206, pp. 364 – 374, 2019. DOI: 10.1016/j.conbuildmat.2019.02.062Search in Google Scholar

[5] Raymond, N., Soshi, M. “A study on the effect of abrasive filament tool on performance of sliding guideways for machine tools”, Procedia CIRP 45, pp. 223 – 226, 2016. DOI: 10.1016/j.procir.2016.02.169Search in Google Scholar

[6] Bergs, T., Schneider, S. A. M., Amara, M., et. al. “Preparation of symmetrical and asymmetrical cutting edges on solid cutting tools using brushing tools with filament-integrated diamond grits”, Procedia CIRP 93, pp. 873 – 878, 2020. DOI: 10.1016/j.procir.2020.04.028Search in Google Scholar

[7] Tryshyn, Р., Honchar, N., Kondratiuk, E., Stepanov, D. “Development of technological restrictions when operating disc polymer-abrasive brushes”, Eastern-European Journal of Enterprise Technologies 6, no 1(108), pp. 27 – 33, 2020. DOI: https: 10.15587/1729-4061.2020.212820Search in Google Scholar

[8] Gonchar, N., Kachan, O., Stepanov, D., et. al., “Measurement of non-rigid tools action force during finishing”, DSMIE-2018. Springer, pp. 23 – 32, 2018. DOI: 10.1007/978-3-319-93587-4_3Search in Google Scholar

[9] Wang, C., Guo, H., Zhao, Y., et al. “Statistical analysis of industrial grinding brush force characteristics based on finite element approach”, Mathematical Problems in Engineering, 2018. DOI: 10.1155/2018/7362705Search in Google Scholar

[10] Podashev, D. “Theory of formation of edge surface roughness finished by radial polymer-abrasive brushes”, Materials Science Forum 1037, pp. 571 – 580, 2021. https://doi.org/10.4028/www.scientific.net/MSF.1037.571.Search in Google Scholar

[11] Wu, X., Tong, X., Sun, H., et al. “Parameter optimization of polishing M300 mold steel with an elastic abrasive”, Mathematical Problems in Engineering, 2018. DOI: 10.1155/2018/3965405.Search in Google Scholar

[12] Abrashkevych, Y., Machyshyn, G. “Vpliv teplovih protsesiv na pratsezdatnist polimerno-abrazivnoyi schitky”, Promislove budivnitstvo ta Inzhenerni sporudi 1, pp. 44 – 47, 2012.Search in Google Scholar

[13] Dimov, Yu. V., Podashev, D. B. “Efficient machining by elastic abrasive wheels”, Russian Engineering Research 37 (7), pp. 655 – 659, 2017. DOI: 10.3103/S1068798X17070097Search in Google Scholar

[14] Aldousiri, B., Shalwan, A., Chin, C. W. “A review on tribological behaviour of polymeric composites and future reinforcements”, Advances in Materials Science and Engineering, 2013. DOI: 10.1155/2013/645923Search in Google Scholar

[15] Dimov, Y., Podashev, D. “Rounding sharp edges of machine parts with elastic polymer abrasive wheels”, IOP Conference Series: Materials Science and Engineering 709 (2), p. 022056, 2020. DOI: 10.1088/1757-899X/709/2/022056Search in Google Scholar

[16] Pavlenko, D., Dvirnyk, Y., Przysowa, R. “Advanced materials and technologies for compressor blades of small turbofan engines”, Aerospace 8 (1), pp. 1 – 16, 2021. DOI: 10.3390/aerospace8010001Search in Google Scholar

[17] Podashev, D. “Control of deformation of elastic polymer-abrasive circles at their wear”, Modern Trends in Manufacturing Technologies and Equipment: ICMTMTE 21, pp. 329, 2021. DOI: 10.21741/9781644901755-58.Search in Google Scholar

[18] Konda, L.C., Srinivas, K. “Evaluation of Wear Behaviour Based on Mechanical Properties and Particle Size in LM26 MMC”, Strojnícky časopis – Journal of Mechanical Engineering 72 (2), pp. 93 – 102, 2022. DOI: 10.2478/scjme-2022-0019Search in Google Scholar

[19] Bahuguna, S., Arya, P. K., Patel, V. K. “Mechanical and abrasive wear properties of friction stir welded joints of aluminum alloy AA6061-T6 with/without nickel coating,” Strojnícky časopis – Journal of Mechanical Engineering 70 (2), pp. 21 – 36, 2020. DOI: 10.2478/scjme-2020-0017Search in Google Scholar

[20] Dimov, Y., Podashev, D. “The wheels for final processing of parts”, IOP Conference Series: Materials Science and Engineering 971 (2), p. 022029, 2020. DOI: 10.1088/1757-899X/971/2/022029Search in Google Scholar

[21] Halila, F., Czamota, C., Nouari, M. “Modeling of abrasive tool wear in machining using statistical and tribological approaches”, 5th World Tribology Congress (WTC 2013) 3, pp. 1917 – 1920, 2014.Search in Google Scholar

[22] Gonchar, N., Tryshyn, Р. “Kompleksnaya otsenka faktorov. vliyayushchikh na razmernyy iznos diskovykh shchetochnykh polimerno-abrazivnykh instrumentov,” Vestnik dvigatelestroeniya 1, pp. 89 – 95, 2019.Search in Google Scholar

[23] Halila, F., Czarnota, C., Nouari, M. “New stochastic wear law for predicting the abrasive flank wear and tool life in machining process”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 228, p. 1243, 2014. DOI: 10.1177/1350650114521405Search in Google Scholar

[24] Kunitsyn, M., Usov, A. “Improvement of a stochastic dynamic model for grinding of cylindrical surfaces with wear-resistant coatings”, Grabchenko’s International Conference on Advanced Manufacturing Processes, pp. 534 – 544, 2021. DOI: 10.1007/978-3-030-68014-5_52.Search in Google Scholar

[25] Niaki, F. A. “A probabilistic-based approach to monitoring tool wear state and assessing its effect on workpiece quality in nickel-based alloys”, PhD Thesis, Clemson University, 2016.Search in Google Scholar

[26] Baig, R. U., Javed, S., Khaisar, M., Shakoor, M., Raja, P. “Development of an ANN model for prediction of tool wear in turning EN9 and EN24 steel alloy”, Advances in Mechanical Engineering 13 (6), p. 16878140211026720, 2021. DOI: 10.1177/16878140211026720Search in Google Scholar

[27] Tabaszewski, M., Twardowski, P., Wiciak-Pikuła, M., Znojkiewicz, N., Felusiak-Czyryca, A., Czyżycki, J. “Machine learning approaches for monitoring of tool wear during grey cast-iron turning”, Materials 15 (12), p. 4359, 2022. DOI: 10.3390/ma15124359. PMID: 35744419; PMCID: PMC9230642Search in Google Scholar

[28] Rzasinski, R. “Technological similarity theory model for series of types of constructions”, International Journal of Materials and Product Technology 50 (3-4), pp. 289 – 304, 2015.Search in Google Scholar

[29] Sterrett, S. G. “Similarity and dimensional analysis”, Philosophy of technology and engineering sciences, pp. 799 – 823, 2009.Search in Google Scholar

[30] Simon, V., Weigand, B., Gomaa, H. “Dimensional analysis for engineers”, Springer, 2017.Search in Google Scholar

[31] Bowers, B., Schatzman, L. “Dimensional analysis”, Developing grounded theory, pp. 86 – 126, 2016.Search in Google Scholar

[32] Gibbings, J. C. “Dimensional analysis”, Springer Science & Business Media, 2011.Search in Google Scholar

[33] Serdobintsev, Y. P., Krylov, E. G., Makarov, A. M., Barabanov, V. G., Kozlovtseva, N. V. “More efficient analysis of the machining of new structural materials”, Russian Engineering Research 35(11), pp. 864 – 867, 2015.Search in Google Scholar

[34] Syzyi, Yu., Ushakov, O., Slipchenko S., et al. “Simulation of the contact temperature in the cylindrical plunge grinding process”, Diagnostyka 21 (2), pp. 77 – 86 , 2020. DOI: 10.29354/diag/122532Search in Google Scholar

eISSN:
2450-5471
Langue:
Anglais