Accès libre

Working Temperature’s Influence on the Lifepo4 Battery Generated Power

À propos de cet article

Citez

https://www.evlithium.com/home-battery-energy-storage/48v-100ah-wall-mounted-lifepo4-battery.html Search in Google Scholar

Liu, J., Gao, D., & Cao, J. (2012, October). Study on the effects of temperature on LiFePO 4 battery life. In 2012 IEEE Vehicle Power and Propulsion Conference (pp. 1436–1440). IEEE. Search in Google Scholar

Liao, L., Zuo, P., Ma, Y., Chen, X., An, Y., Gao, Y., & Yin, G. (2012). Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta, 60, 269–273. Search in Google Scholar

Liu, R., Guo, H., Gu, H., Li, W., Cao, J., Ren, X., ... & Liang, G. (2023). Influence of PAN/PANI polymer on low-temperature rate performance of LiFePO4. Ionics, 29(6), 2175–2189. Search in Google Scholar

S. Kaur, P. Singh, V. Tripathi, R. Kaur, Recent trends in wireless and optical fiber communication, Global Transition Proceedings, Elsevier BV and KeAi Communications Co., pp.1–8, 2022. Search in Google Scholar

Naumann, M., Spingler, F. B., & Jossen, A. (2020). Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell. Journal of Power Sources, 451, 227666. Search in Google Scholar

Omar, N., Monem, M. A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O., ... & Van Mierlo, J. (2014). Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model. Applied Energy, 113, 1575–1585 Search in Google Scholar

https://utb-shop.ro/poze/15315/CATL-LF302Ah-3.2V%20english%20version.pdf Search in Google Scholar

https://www.aliexpress.com/item/1005004505155444.html Search in Google Scholar

https://www.aliexpress.com/item/1005005600853041.html?spm=a2g0o Search in Google Scholar

https://www.aliexpress.com/item/1005005219259285.html? Search in Google Scholar

Krupp, A., Ferg, E., Schuldt, F., Derendorf, K., & Agert, C. (2020). Incremental capacity analysis as a state of health estimation method for lithium-ion battery modules with series-connected cells. Batteries, 7(1), 2. Search in Google Scholar

Schürholz, D., Schweighofer, B., Neumayer, M., & Wegleiter, H. (2022). Determination of Cycle to Cycle Battery Cell Degradation with High-Precision Measurements. Applied Sciences, 12(23), 11876. Search in Google Scholar

Striebel, K., Shim, J., Srinivasan, V., & Newman, J. (2005). Comparison of LiFePO4 from different sources. Journal of the Electrochemical Society, 152(4), A664. Search in Google Scholar

Guerfi, A., Ravet, N., Charest, P., Dontigny, M., Petitclerc, M., Gauthier, M., & Zaghib, K. (2007). Temperature Effect on LiFePO4 Cathode Performance. ECS Transactions, 3(36), 3. Search in Google Scholar

Arteaga, J., Zareipour, H., & Thangadurai, V. (2017). Overview of lithium-ion grid-scale energy storage systems. Current Sustainable/Renewable Energy Reports, 4, 197–208. Search in Google Scholar

Striebel, K., Shim, J., Srinivasan, V., & Newman, J. (2005). Comparison of LiFePO4 from different sources. Journal of the Electrochemical Society, 152(4), A664. Search in Google Scholar

Xia, J., Zhu, F., Wang, L., Wang, G., Meng, Y., & Zhang, Y. (2018). In situ coating on LiFePO 4 with ionic liquid as carbon source for high-performance lithium batteries. Journal of Nanoparticle Research, 20, 1–13. Search in Google Scholar