Accès libre

Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea)

,  et   
26 juin 2014
À propos de cet article

Citez
Télécharger la couverture

[1] Alonso M.C., Puig D., Silgoner I., Grasserbauer M. & Barcelo D. (1998). Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 823: 231–239, DOI: 10.1016/j.wasman.2011.01.021 http://dx.doi.org/10.1016/S0021-9673(98)00110-110.1016/j.wasman.2011.01.02121333518 Search in Google Scholar

[2] Baker J.I. & Hites R.A. (2000). Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A Mass Balance Investigation. Environ. Sci. Technol. 34: 2879–2886. DOI: http://dx.doi.org/10.1021/es9912325. http://dx.doi.org/10.1021/es991232510.1021/es9912325 Search in Google Scholar

[3] Borysiewicz M. (2008). Risk profile of pentachlorofenol, Institute Of Environmental Protection. Warsaw. Poland. Search in Google Scholar

[4] Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J. 79: 243–248. DOI: 10.1016/j.microc.2004.10.005. http://dx.doi.org/10.1016/j.microc.2004.10.00510.1016/j.microc.2004.10.005 Search in Google Scholar

[5] Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052. http://dx.doi.org/10.1016/j.chemosphere.2004.12.05210.1016/j.chemosphere.2004.12.05215910896 Search in Google Scholar

[6] Dimou A., Sakellarides Th., Sakkas V & Albanis T. 2003). Concentrations levels of phenols in seawater and sediments in marine coastal line of Pieria (Thermaikos Gulf) by HPLC-UV after SPE preconcentration, Protection and Restoration of the Environment VII. MykonoS2004. DOI: 10.1016/j.jhazmat.2008.12.117. 10.1016/j.jhazmat.2008.12.11719188019 Search in Google Scholar

[7] Dmitruk U., Zbieć E. & Dojlido J. (2006). Chlorophenols in water environment. Environmental Protection 28(3):25–28. DOI: 10.1002/clen.200700107. 10.1002/clen.200700107 Search in Google Scholar

[8] Dunlap P. (1999), Quorum Regulation of luminescence of Vibrio fisheri, Journal of Molecular Microbiology and Biotechnology.1(1):5–12. DOI:10.1007/s002030050254. 10.1007/BF02529971 Search in Google Scholar

[9] Euro Chlor Risk Assessment for the Marine Environment (1999). Pentachlorophenol. OSPARCOM Region — North Sea. Draft Search in Google Scholar

[10] Furukawa, A., Otsuka, H.& Kiyono, J. (2006). Structural Damage Detection Method Using Uncertain Frequency Response Functions. Computer-Aided 283 Civil and Infrastructure Engineering 21: 292–305. DOI: 10.1177/1475921707081980. http://dx.doi.org/10.1111/j.1467-8667.2006.00436.x10.1177/1475921707081980 Search in Google Scholar

[11] Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K. & Bolałek J. (2006). Pore water phosphate and ammonia below the permanent halocline in the southeastern Baltic Sea and their benthic fluxes under anoxic conditions. Journal of Marine Systems 63: 141–154. DOI: 10.1016/j.jmarsys.2006.06.003. http://dx.doi.org/10.1016/j.jmarsys.2006.06.00310.1016/j.jmarsys.2006.06.003 Search in Google Scholar

[12] IARC (1997). Monographs and the evaluation of the carcinogenic risk of chemicals to man. Some fumigants, the herbicides 2,40D and 2,4,5-T, chlorinated dibenzodioxins and miscellaneous industrial chemicals. IARC-WHO. Lyon 15: 354–367. DOI: 10.1016/0045-6535 (92)90100-6. Search in Google Scholar

[13] Ingerslev F. & Nyholm N. (2000). Shake-flask test for determination of biodegradation rates of C-14-labeled chemicals at low concentrations in surface water systems, ECOTOX ENV.45(3):274–283. DOI: 10.1006/eesa.1999.1877. http://dx.doi.org/10.1006/eesa.1999.187710.1006/eesa.1999.187710702347 Search in Google Scholar

[14] Klamer H.J.C., Leonards P.E.G., Lamoree M.H., Villerius L.A., Akerman J.E. & Bakker J.F.(2005). A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58: 1579–1587. DOI: 10.1016/j.chemosphere.2004.11.027. http://dx.doi.org/10.1016/j.chemosphere.2004.11.02710.1016/j.chemosphere.2004.11.027 Search in Google Scholar

[15] Kramarska R., Kasiński J.R., 2008, Sedimentary environment of amber-bearing association along the polish -russian Baltic coastline, Exkurs f. und Ver?fftl.DGG. 46–57 Search in Google Scholar

[16] Kwan K. & Dutka B.(1995). Comparative assessment of two Solid- Phase Toxicity Bioassays The Direct Sediment Toxicity Testing Procedure (DSTTP) and the Microtox® Solid- Phase Test (SPT). Bull. Environ. Contam. Toxicol. 55: 338–346. DOI: 10.1007/BF00206670. http://dx.doi.org/10.1007/BF0020667010.1007/BF00206670 Search in Google Scholar

[17] Lahr J.L., Maas-Diepenveen, S.C Stuijfzand, P.E.G Leonards, J.M. Druke, S. Luecker, A. Espeldoorn, L.C.M. Kerkum, L.L.P. van Stee & A.J. Hendriks (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?. Water Research 37: 1691–1710. DOI: 10.1016/S0043-1354(02)00562-6. http://dx.doi.org/10.1016/S0043-1354(02)00562-610.1016/S0043-1354(02)00562-6 Search in Google Scholar

[18] Liu P.Y., Zheng M.H. & Xu X.B. (2002). Phototransformation of polychlorinated dibenenzo-p-dioxins from photolysis of pentachlorophenol on soils surface. Chemosphere 46:1191–1193. ISSN: 0045-6535 http://dx.doi.org/10.1016/S0045-6535(01)00202-810.1016/S0045-6535(01)00202-8 Search in Google Scholar

[19] Łęczyński L. & Szymczak E. (2010). Własności fizyczne osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 69–117 Search in Google Scholar

[20] Magnusson K., Ekelund R., Dave G., Granmo Å., Förlin L., Wennberg L., Samuelsson M., Berggren M. & Broström-Lundén E. (1996). Contamination and correlation with toxicity of sediment samples from the Skagerrak and Kattegat. Journal of Sea Research 35(1–3): 223–234. ISSN: 1385-1101 10.1016/S1385-1101(96)90749-2 Search in Google Scholar

[21] Matuszewska K., Bialkowska I. & Bolałek J.(2003). Interdependence between phosphorus forms in sediments and iron in interstitial waters the Gulf of Gdańsk. Oceanological and Hydrobiological Studies 32: 5–14. DOI: 10.1016/j.csr.2008.01.009. 10.1016/j.csr.2008.01.009 Search in Google Scholar

[22] Morales C., Canosa P., Rodrigues I., Rubi E. & Cela R. (2005). Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A. 1082: 128–135. DOI: 10.1007/s11270-013-1486-4. http://dx.doi.org/10.1016/j.chroma.2005.05.05910.1007/s11270-013-1486-4 Search in Google Scholar

[23] Muir J. & Eduljee G. (1999). PCP in the freshwater and marine environment of the European Union. The Science of the Total Environment 236: 41–56. ISSN: 0048-9697. http://dx.doi.org/10.1016/S0048-9697(99)00281-810.1016/S0048-9697(99)00281-8 Search in Google Scholar

[24] Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014. http://dx.doi.org/10.1016/j.chemosphere.2011.08.01410.1016/j.chemosphere.2011.08.01421917292 Search in Google Scholar

[25] Niemirycz E.(2008). Halogenated organic compounds in the environment in relation to climate change. Environmental Monitoring Library.Warsaw. 120 Search in Google Scholar

[26] Niemirycz E. (2010). Sprawozdanie z udziału w spotkaniu Grupy Specjalnej TZO w ramach Konwencji EKG ONZ w sprawie Transgranicznego Zanieczyszczenia Powietrza na Dalekie Odległości, Montreal, Materiały Ministerstwa Środowiska. Search in Google Scholar

[27] Niemirycz E. (2011). Dopływ substancji chemicznych do Morza Bałtyckiego, w: Uścinowicz Sz.,red., Geochemia osadów powierzchniowych Morza Bałtyckiego, 93–123 Search in Google Scholar

[28] Oh J. R., Chio H. K., Hong S. H., Yim U. H., Shim W. J., Kannan N. (2005). A preliminary report of persistent organochlorine pollutants in the Yellow Sea. Marine Pollutant Bulletin, 50: 217–222. http://dx.doi.org/10.1016/j.marpolbul.2004.11.03510.1016/j.marpolbul.2004.11.03515737364 Search in Google Scholar

[29] Padilla-Sanchez J.A., Plaza-Bolanos P., Romero-Gonzalez R., Garrido-Frenich A. & Martinez V.(2010). Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spect. J Chromatogr A. 1217: 5724. DOI: 10.1016/j.chroma.2010.07.004. http://dx.doi.org/10.1016/j.chroma.2010.07.00410.1016/j.chroma.2010.07.004 Search in Google Scholar

[30] Penta Task Force (1997). Submission to the commission of the European communities in connection with suggestes proposal to amend the ninth amendment to council directive 76r769. Vulcan ChemicalsrKMG-Bernuth. Search in Google Scholar

[31] Parvez S., Venkataraman C. & Mukherj (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 32: 265–268. DOI: 10.1016/j.envint.2005.08.022. http://dx.doi.org/10.1016/j.envint.2005.08.02210.1016/j.envint.2005.08.022 Search in Google Scholar

[32] Pazdro K. (2004). Persistent Organic Pollutants in sediments from the Gulf of Gdańsk, Annual Environmental Protection 6: 63–75 Search in Google Scholar

[33] Persoon G., Marsalek B., Blinova I., TÖrÖkne A., Zarina D., Manusadzianas L., Nałęcz - Jawecki G., Tofan L., Stephanova N., Tothova L. & Kolar B. (2003). Praktyczna i prosta klasyfikacja poziomu toksyczności wód pitnych i ścieków przy użyciu systemów Microbiotest. Search in Google Scholar

[34] Piekarek-Jankowska H. (2010). Klasyfikacja osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 119–130 Search in Google Scholar

[35] Rappe C. (1992). Sources of PCDDs and PCDFs, introduction, reaction, levels, patterns, profiles and trends. Chemosphere 25: 41–44. DOI: 10.1016/0045-6535(94)90103-1. http://dx.doi.org/10.1016/0045-6535(92)90475-710.1016/0045-6535(94)90103-1 Search in Google Scholar

[36] Ricking M., Beckman E. & Svenson A. (2002). PAHS and Microtox acute toxicity in contaminated sediments in Sweden. J. Soils Sed 2(3): 129–136. DOI: 10.1007/BF02988464. http://dx.doi.org/10.1007/BF0298846410.1007/BF02988464 Search in Google Scholar

[37] Routti H., Bert van Bavel, Letcher R., Arukwe A., Chu S., Gabrielsen G. (2009), Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Environmental Pollution 157: 2428–2434. DOI: 10.1016/j.envpol.2009.03.008. http://dx.doi.org/10.1016/j.envpol.2009.03.00810.1016/j.envpol.2009.03.008 Search in Google Scholar

[38] Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36(14): 2949–2968. ISSN: 0045-6535. http://dx.doi.org/10.1016/S0045-6535(98)00001-010.1016/S0045-6535(98)00001-0 Search in Google Scholar

[39] Saniewska D., Bełdowska M., Bełdowski J., Jędruch A., Saniewski M. & Falkowska L. (2014). Mercury loads into the sea associated with extreme flood. Environmental Pollution 05/2014. 191C:93–100. DOI:10.1016/j.envpol.2014.04.003 http://dx.doi.org/10.1016/j.envpol.2014.04.00310.1016/j.envpol.2014.04.003 Search in Google Scholar

[40] Sapota G. (2006). Peristent Organic Pollutants (POPs) in bottom sediments from the Baltic Sea, Oceanological and Hydrobiological Studies. Vol. XXXV(4):295–306 Search in Google Scholar

[41] Scelza R. (2008). Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biology & Biochemistry 40: 2162–2169. DOI: 10.1016/j.soilbio.2008.05.005. http://dx.doi.org/10.1016/j.soilbio.2008.05.00510.1016/j.soilbio.2008.05.005 Search in Google Scholar

[42] Shepard F. P.(1954). Nomenclature based on sand-silt-clay ratios, J. sediment. Petrol. 24: 151–158 10.1306/D4269774-2B26-11D7-8648000102C1865D Search in Google Scholar

[43] Stephenson M.T. (1992). A survey of produced water studies, in: Technological, environmental issues and solutions, edited: J. P. Ray & F. Rainer Engelhardt Search in Google Scholar

[44] Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modelling. Doctoral Dissertation. Umeå University. Sweden Search in Google Scholar

[45] Sundqvist K., Tysklind M., Cato I., Bignert A. & Wiberg K. (2009). Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea, Environmental Science Pollution Reaserch 16: 396–419. DOI: 10.1007/s11356-009-0110-z. http://dx.doi.org/10.1007/s11356-009-0110-z10.1007/s11356-009-0110-z Search in Google Scholar

[46] Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J.(1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality, An International Journal. 11: 293–300 http://dx.doi.org/10.1002/(SICI)1098-2256(1996)11:4<293::AID-TOX2>3.0.CO;2-410.1002/(SICI)1098-2256(1996)11:4<293::AID-TOX2>3.0.CO;2-4 Search in Google Scholar

[47] SWEPA (2009). The role of pentachlorophenol treated wood for emissions of dioxins into the environment. Report 5935 Search in Google Scholar

[48] Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam. Search in Google Scholar

[49] Szefer P., Glasby G.P., Kusak A., Szefer K., Jankowska H., Wołowicz M. & Ali A.A (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, southern Baltic. Appl. Geochem. 13: 293–304. ISSN: 0883-2927. http://dx.doi.org/10.1016/S0883-2927(97)00098-X10.1016/S0883-2927(97)00098-X Search in Google Scholar

[50] Szefer P., Glasby G.P., Pempkowiak J. & Kaliszan R. (1995). Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea of Poland, Chem. Geol. 120: 111–126. ISSN:0967-0653. http://dx.doi.org/10.1016/0009-2541(94)00103-F10.1016/0009-2541(94)00103-F Search in Google Scholar

[51] US EPA (1984). Wood preservative pesticides: Creosote, pentachlorophenol, inorganic arsenicals. Position document 4. Washington. DC: U.S. Environmental Protection Agency. Office of Pesticides and Toxic Substances Search in Google Scholar

[52] Uścinowicz Sz. (1997). Basen Gdański. Przegląd Geologiczny 45(6): 589–594. Search in Google Scholar

[53] Uścinowicz Sz., Kramarska R. & Przeździecki R. (2008). Rozpoznanie i wizualizacja budowy geologicznej Zatoki Gdańskiej dla potrzeb gospodarowania zasobami naturalnymi. Centr. Arch. Geol. Państw. Inst. Geol., Oddz. Geologii Morza, Gdańsk Search in Google Scholar

[54] Uścinowicz Sz., Narkiewicz W. & Sokołowski K. (2003). Mineralogical composition and granulometry. W: Contaminants in the Baltic Sea sediments (red. M. Perttilä). MERI Report Series of the Finnish Institute of Marine Research 50: 21–24. Search in Google Scholar

[55] Uścinowicz Sz., Szefer P. & Sokołowski K (2010). Pierwiastki śladowe w osadach Morza Bałtyckiego w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 214–272 Search in Google Scholar

[56] Verta M & Sunqvist C. (2007). Dioxin concentrations in sediments of the Baltic Sea - a survey of existing data. Chemosphere 67: 1762–1775. DOI: 10.1016/j.chemosphere.2006.05.125. http://dx.doi.org/10.1016/j.chemosphere.2006.05.12510.1016/j.chemosphere.2006.05.125 Search in Google Scholar

[57] Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Gallasi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy), Water Research 37(3):501–518 http://dx.doi.org/10.1016/S0043-1354(02)00109-410.1016/S0043-1354(02)00109-4 Search in Google Scholar

[58] Wang L., Huang W., Shao X. & Lu X. (2003). An organic solvent-free microwave-assisted extraction of some priority pollutants of phenols in lake sediments. Anal Sci. 19: 1487–90. DOI: 10.1016/j.aca.2013.04.026. http://dx.doi.org/10.2116/analsci.19.148710.1016/j.aca.2013.04.02623870403 Search in Google Scholar

[59] Wentworth C.A. (1922). Scale of grade and class terms for clastic sediments. J. Geol., 30 10.1086/622910 Search in Google Scholar

[60] Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego, praca doktorska Search in Google Scholar

[61] Zheng, M. H.; Zhang, B.; Bao, Z. C.; Yang, H.; Xu, X. B.(2000). Analysis of pentachlorophenol from water, sediments, and fish bile of Dongting lake in China. Bulletin of Environmental Contamination and Toxicology. 64(1): 16–19. DOI 10.1007/s001289910003 http://dx.doi.org/10.1007/s00128991000310.1007/s00128991000310606687 Search in Google Scholar

[62] Żurek J. (2002). Konwencja Sztokholmska w sprawie trwałych zanieczyszczeń organicznych. Konwencje międzynarodowe i uchwały organizacji międzynarodowych. Instytut Ochrony Środowiska. Search in Google Scholar