À propos de cet article

Citez

[1] Aguiar F.C. & Ferreira M.T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin. Portugal. Environ. Conserv. 32(1): 30–41. DOI:10.1017/S0376892905001992 http://dx.doi.org/10.1017/S037689290500199210.1017/S0376892905001992 Search in Google Scholar

[2] Allan J.D. & Flecker S.A. (1993). Biodiversity conservation in running waters. BioScience 43(1): 32–443. DOI: 10.2307/1312104 http://dx.doi.org/10.2307/131210410.2307/1312104 Search in Google Scholar

[3] Anbumozhi V., Radhakrisham J. & Yamaji, E. (2005). Impact of riparian buffer zone on water quality and associated management considerations. Ecol. Eng. 24(5): 517–523. http://dx.doi.org/10.1016/j.ecoleng.2004.01.007 http://dx.doi.org/10.1016/j.ecoleng.2004.01.00710.1016/j.ecoleng.2004.01.007 Search in Google Scholar

[4] Baart I., Gschöpf C., Blaschke A.P., Preiner S. & Hein, T. (2010). Prediction of potential macrophytes development in response to restoration measures in an urban riverine wetland. Aquat. Bot. 93(3): 153–162. http://dx.doi.org/10.1016/j.aquabot.2010.06.002 http://dx.doi.org/10.1016/j.aquabot.2010.06.00210.1016/j.aquabot.2010.06.002 Search in Google Scholar

[5] Bastviken D., Olsson M. & Tranvik L. (2003). Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb. Ecol. 46(1): 73–82. DOI: 10.1007/s00248-002-1061-9 http://dx.doi.org/10.1007/s00248-002-1061-910.1007/s00248-002-1061-9 Search in Google Scholar

[6] Berka C., Schreier H. & Hall K. (2001). Linking water quality with agricultural intensification in a Rural Watershed. Water Air Soil Pollut. 127(1–4): 389–401. DOI: 10.1023/A:1005233005364 http://dx.doi.org/10.1023/A:100523300536410.1023/A:1005233005364 Search in Google Scholar

[7] Bilby R.E. & Bisson P.A. (1998). Function and distribution of large woody debris. In: Naiman R.J., Bilby R.E. (Eds.), River ecology and management: Lessons from the Pacific Coast (pp. 324–398). Springer, New York 10.1007/978-1-4612-1652-0_13 Search in Google Scholar

[8] Bodeux A. (1955). Alnetum glutinosae. Mitt. Florist.-Soziol. Arbsgem. 5: 114–137. Search in Google Scholar

[9] Bornette G., Amoros C. & Lamouroux L. (1998). Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biol. 39(2): 267–283. DOI: 10.1046/j.1365-2427.1998.00273.x http://dx.doi.org/10.1046/j.1365-2427.1998.00273.x10.1046/j.1365-2427.1998.00273.x Search in Google Scholar

[10] Braskerud B.C. (2002). Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 18(3): 351–370. http://dx.doi.org/10.1016/S0925-8574(01)00099-4 http://dx.doi.org/10.1016/S0925-8574(01)00099-410.1016/S0925-8574(01)00099-4 Search in Google Scholar

[11] Chin A. (2006). Urban transformation of river landscapes in a global context. Geomorphology 79(3–4): 460–487. http://dx.doi.org/10.1016/j.geomorph.2006.06.033 http://dx.doi.org/10.1016/j.geomorph.2006.06.03310.1016/j.geomorph.2006.06.033 Search in Google Scholar

[12] Clerici N., Weissteiner C.J., Paracchini M.L., Boschetti L., Baraldi A. & Strobl P. (2013). Pan-European distribution modelling of stream riparian zones based on multi-source Earth Observation data. Ecol. Indic. 24: 211–223. http://dx.doi.org/10.1016/j.ecolind.2012.06.002 http://dx.doi.org/10.1016/j.ecolind.2012.06.00210.1016/j.ecolind.2012.06.002 Search in Google Scholar

[13] Darveau M., Labbe P., Beauchesne P., Belanger L. & Huot J. (2001). The use of riparian forest strips by small mammals in a boreal balsam fir forest. Forest Ecol. Manage. 143(1–3): 95–104. http://dx.doi.org/10.1016/S0378-1127(00)00509-0 http://dx.doi.org/10.1016/S0378-1127(00)00509-010.1016/S0378-1127(00)00509-0 Search in Google Scholar

[14] Davies B., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 125(1–4): 1–8. http://dx.doi.org/10.1016/j.agee.2007.10.006 http://dx.doi.org/10.1016/j.agee.2007.10.00610.1016/j.agee.2007.10.006 Search in Google Scholar

[15] Douda J. (2008). Formalized classification of the vegetation of alder carr and floodplain forests in the Czech Republic. Preslia 80: 199–224. Search in Google Scholar

[16] Dufrêne M. & Legendre P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67(3): 345–366. http://dx.doi.org/10.1890/0012-9615(1997)067 [0345:SAAIST]2.0.CO;2 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 Search in Google Scholar

[17] Fernandes M.R., Aguiar F.C. & Ferreira M.T. (2011). Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape Urban Plan. 99(2): 166–177. http://dx.doi.org/10.1016/j.landurbplan.2010.11.001 http://dx.doi.org/10.1016/j.landurbplan.2010.11.00110.1016/j.landurbplan.2010.11.001 Search in Google Scholar

[18] Ferreira M.T., Albuquerque A., Aguiar F.C. & Sidorkewicz N. (2002). Assessing reference sites and ecological quality of river plant assemblages from an Iberian basin using a multivariate approach. Archiv fur Hydrobiologie 155(1): 121–145. 10.1127/archiv-hydrobiol/155/2002/121 Search in Google Scholar

[19] Florsheim J.L., Mount J.F. & Chin A. (2008). Bank erosion as a desirable attribute of rivers. BioScience 58(6): 519–529. DOI: 10.1641/B580608 http://dx.doi.org/10.1641/B58060810.1641/B580608 Search in Google Scholar

[20] Freeman R.E. & Ray R.O. (2001). Landscape ecology practice by small scale river conservation groups. Landscape Urban Plan. 56(3–4): 171–184. http://dx.doi.org/10.1016/S0169-2046(01)00181-5 http://dx.doi.org/10.1016/S0169-2046(01)00181-510.1016/S0169-2046(01)00181-5 Search in Google Scholar

[21] Gaudi A. (2005). The human impact on the natural environment. Past, present and future. sixth ed. Blackwell Publishing Search in Google Scholar

[22] Greenway M. & Woolley A. (1999). Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng. 12(1–2): 39–55. http://dx.doi.org/10.1016/S0925-8574(98)00053-6 http://dx.doi.org/10.1016/S0925-8574(98)00053-610.1016/S0925-8574(98)00053-6 Search in Google Scholar

[23] Greenway M. & Woolley A. (2001). Changes in plant biomass and nutrient removal over 3 years in a constructed free water surface flow wetland in Cairns, Australia. Wat. Sci. Tech. 44(11–12): 303–310. 10.2166/wst.2001.0844 Search in Google Scholar

[24] Hald A.B. (2002). Impact of agricultural fields on vegetation of stream border ecotones in Denmark. Agric. Ecosyst. Environ. 89(1–2): 127–135. http://dx.doi.org/10.1016/S0167-8809(01)00324-3 http://dx.doi.org/10.1016/S0167-8809(01)00324-310.1016/S0167-8809(01)00324-3 Search in Google Scholar

[25] Harrison M.D., Groffman P.M., Mayer P.M., Kaushal S.S. & Newcomer T.A. (2011). Denitrification in alluvial wetlands in an urban landscape. J. Environ. Qual. 40(2): 634–646. DOI: 10.2134/jeq2010.0335 http://dx.doi.org/10.2134/jeq2010.033510.2134/jeq2010.033521520770 Search in Google Scholar

[26] Keller E.A. & MacDonald A. (1995). River channel change: The role of large woody debris. In: Gurnell, A., Petts, G., (Eds.), Changing river channel. 217–235. Wiley, New York Search in Google Scholar

[27] Londo G. (1976). The decimal scale for relevés of permanent quadrats. Vegetatio 33(1): 61–64. DOI: 10.1007/BF00055300 http://dx.doi.org/10.1007/BF0005530010.1007/BF00055300 Search in Google Scholar

[28] Malmqvist B. & Rundle S. (2002). Threats to the running water ecosystems of the world. Environ. Conserv. 29(2): 134–153. DOI:10.1017/S0376892902000097 http://dx.doi.org/10.1017/S037689290200009710.1017/S0376892902000097 Search in Google Scholar

[29] Manolaki P. & Papastergiodou E. (2013). The impact of environment factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquat. Bot. 104: 34–46. http://dx.doi.org/10.1016/j.aquabot.2012.09.009 http://dx.doi.org/10.1016/j.aquabot.2012.09.00910.1016/j.aquabot.2012.09.009 Search in Google Scholar

[30] Matuszkiewicz J.M. (2002). Zespoły leśne Polski. PWN, Warsaw, (in Polish). Search in Google Scholar

[31] Matuszkiewicz J.M. (2008). Potential natural vegetation of Poland, IGiPZ PAN, Warsaw. Search in Google Scholar

[32] McCune B. & Mefford M.S. (2011). PcOrd multivariate analysis of ecological data, version 6.06. MjM Software Design, Gleneden Beach, Oregon. Search in Google Scholar

[33] MEA — Millennium Ecosystem Assessment. (2005). Ecosystems and Human Wellbeing: Synthesis Report. Island Press, Washington, DC. Search in Google Scholar

[34] Meuleman A.F.M., Beekman J.P.H. & Verhoeven J.T.A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wastewater application. Wetlands 22(4): 712–721. DOI: 10.1672/02775212(2002)022[0712:NRANUE]2.0.CO;2 http://dx.doi.org/10.1672/0277-5212(2002)022[0712:NRANUE]2.0.CO;210.1672/0277-5212(2002)022[0712:NRANUE]2.0.CO;2 Search in Google Scholar

[35] Meybeck M. (2001). Global alterations of riverine geochemistry under human pressure. In: Ehlers E. (Ed.), Understanding the earth system: compartments, processes and interactions (pp. 97–113). Springer-Verlag, Heidelberg. http://dx.doi.org/10.1007/978-3-642-56843-5_610.1007/978-3-642-56843-5_6 Search in Google Scholar

[36] Milner A.M. & Gloyne-Phillips I.T. (2005). The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21: 403–420. DOI: 10.1002/rra.815 http://dx.doi.org/10.1002/rra.81510.1002/rra.815 Search in Google Scholar

[37] Minchinton T., Simpson J. & Bertness M. (2006). Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J. Ecol. 94(2): 342–354. DOI: 10.1111/j.1365-2745.2006.01099.x http://dx.doi.org/10.1111/j.1365-2745.2006.01099.x10.1111/j.1365-2745.2006.01099.x Search in Google Scholar

[38] Mooney A.C. & Marshall E.J.P. (2001). The influence of sown margin strips management and boundary structure on herbaceous field margin vegetation in two neighbouring farms in southern England. Agric. Ecosyst. Environ. 86(2): 187–202. http://dx.doi.org/10.1016/S0167-8809(00)00283-8 http://dx.doi.org/10.1016/S0167-8809(00)00283-810.1016/S0167-8809(00)00283-8 Search in Google Scholar

[39] Naiman R., Decamps H. & McClain M. (2005). Riparia — Ecology, Conservation, and Management of Streamside Communities (pp 448). Academic Press. Search in Google Scholar

[40] Naiman R.J. & Decamps, H. (1997). The ecology of interfaces — riparian zones. Annu. Rev. Ecol. Syst. 28: 621–658. Stable URL: http://www.jstor.org/stable/2952507 http://dx.doi.org/10.1146/annurev.ecolsys.28.1.62110.1146/annurev.ecolsys.28.1.621 Search in Google Scholar

[41] Palink B.J., Zassada J.C. & Hedman C.W. (2000). Ecological principles for riparian silviculture. In: Verry E., Hornbeck J.W. & Dolloff C.A. (Eds.), Riparian Management in Forests of the Continental Eastern United States (pp. 233–254). Lewis Pubs, Washington DC. Search in Google Scholar

[42] Patten D. T. (1998). Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands 18(4): 498–512. DOI: 10.1007/BF03161668 http://dx.doi.org/10.1007/BF0316166810.1007/BF03161668 Search in Google Scholar

[43] Pedroli B., de Blust G., Van Looy K. & Van Rooij S. (2002). Setting targets in strategies for river restoration. Landsc. Ecol. 17(1): 5–18. DOI: 10.1023/A:1015221425315 http://dx.doi.org/10.1023/A:101522142531510.1023/A:1015221425315 Search in Google Scholar

[44] Prieditis N. (1997). Alnus glutinosa — dominated wetland forests of the Baltic Region: community structure, syntaxonomy and conservation. Plant Ecol. 129(1): 49–94. DOI:10.1023/A:1009759701364 http://dx.doi.org/10.1023/A:100975970136410.1023/A:1009759701364 Search in Google Scholar

[45] Richardson J.S. (2008). Aquatic arthropods and forestry: large-scale land-use effects on aquatic systems in nearctic temperate regions. Can. Entomol. 140(4): 495–509. DOI: http://dx.doi.org/10.4039/n07-LS04 http://dx.doi.org/10.4039/n07-LS0410.4039/n07-LS04 Search in Google Scholar

[46] Rodewald A.D. (2003). The importance of land use uses within the landscape matrix. Wildlife Society Bulletin 31(2): 586–592. http://www.jstor.org/stable/3784344 Search in Google Scholar

[47] Rodewald A.D. & Bakermans, M.H. (2006). What is the appropriate paradigm for riparian forest conservation? Biol. Conserv. 128(2): 193–200. http://dx.doi.org/10.1016/j.biocon.2005.09.041 http://dx.doi.org/10.1016/j.biocon.2005.09.04110.1016/j.biocon.2005.09.041 Search in Google Scholar

[48] Sirivedhin T. & Gray K.A. (2006). Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecol. Eng. 26(2): 167–181 http://dx.doi.org/10.1016/j.ecoleng.2005.09.001 http://dx.doi.org/10.1016/j.ecoleng.2005.09.00110.1016/j.ecoleng.2005.09.001 Search in Google Scholar

[49] Sudduth E.B. & Meyer J.L. (2006). Effects of bioengineered streambank stabilization on bank habitat and macroinvertebrates in urban streams. Environ. Manag. 38(2): 218–226. DOI:10.1007/s00267-004-0381-6 http://dx.doi.org/10.1007/s00267-004-0381-610.1007/s00267-004-0381-6 Search in Google Scholar

[50] Sweeney B.W., Bott T.L., Jackson J.K., Kaplan L.A., Newbold J.D., Standley L.J., Hession W.C. & Horwitz R.J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. U.S.A. 101(39): 14132–14137. DOI:10.1073/pnas.0405895101 http://dx.doi.org/10.1073/pnas.040589510110.1073/pnas.0405895101 Search in Google Scholar

[51] Szoszkiewicz K., Zbierska J., Jusik Sz., Zgoła T. (2010). Makrofitowa Metoda Oceny Rzek — Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o rośliny wodne. Wyd. Bogucki, Poznań. pp. 82. Search in Google Scholar

[52] Toet S., Huibers L.H.F.A., Van Logtestijn R.S.P. & Verhoeven J.T.A. (2003). Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501(1–3): 29–44. DOI:10.1023/A:1026299017464 http://dx.doi.org/10.1023/A:102629901746410.1023/A:1026299017464 Search in Google Scholar

[53] Water Framework Directive 2000/60/EC. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF Search in Google Scholar

[54] Verry E.S., Dolloff C.A. & Manning M.E. (2004). Riparian ecotone: a functional definition and delineation for resource assessment. Water Air Soil Pollut. 4(1): 67–94. DOI: 10.1023/B:WAFO.0000012825.77300.08. http://dx.doi.org/10.1023/B:WAFO.0000012825.77300.0810.1023/B:WAFO.0000012825.77300.08 Search in Google Scholar

[55] Weiher E. & Keddy P.A. (1995). The assembly of experimental wetland plant communities. Oikos 73: 323–335. http://dx.doi.org/10.2307/354595610.2307/3545956 Search in Google Scholar

[56] Weisner S.E.B., Eriksson P.G., Grane’li W. & Leonardson L. (1994). Influence of aquatic macrophytes on nitrate removal in wetlands. Ambio 23: 363–366. Search in Google Scholar

[57] Weisner S.E.B. & Thiere G. (2010). Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity-ecosystem functioning hypothesis. Freshwater Biol. 55(2): 387–396. DOI: 10.1111/j.1365-2427.2009.02288.x. http://dx.doi.org/10.1111/j.1365-2427.2009.02288.x10.1111/j.1365-2427.2009.02288.x Search in Google Scholar

[58] Zalewski M., Bis B., Łapińska M., Frankiewicz P. & Puchalski W. (1998). The importance of the riparian ecotone and river hydraulics for sustainable basin-scale restoration scenarios. Aquatic Conserve: Mar. Freshw. Ecosts. 8(2): 287–307. DOI: 10.1002/(SICI)1099-0755(199803/04)8:2〈287::AID-AQC274〉3.0.CO;2-R. http://dx.doi.org/10.1002/(SICI)1099-0755(199803/04)8:2<287::AID-AQC274>3.0.CO;2-R10.1002/(SICI)1099-0755(199803/04)8:2<287::AID-AQC274>3.0.CO;2-R Search in Google Scholar

[59] Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J. & Korzeniak U. (2002). Biodiversity of Poland. 2. Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow. ISBN 83-85444-95-5. Search in Google Scholar

[60] Zedler J.B. & Kercher S. (2004). Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23(5): 431–452. DOI: 10.1080/07352680490514673. http://dx.doi.org/10.1080/0735268049051467310.1080/07352680490514673 Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences