Accès libre

The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland)

À propos de cet article

Citez

[1] Aleksander-Kwaterczak, U. Ciszewski D. (2012). Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead-zinc mine: functioning of a diffuse pollution source, Environ. Earth Sci., 65(4), SI, 1179–1189. http://dx.doi.org/10.1007/s12665-011-1366-410.1007/s12665-011-1366-4 Search in Google Scholar

[2] Armitage, P.D. Michael, A. Bowes, J. Vincent H.M. (2007). Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the River Nent (Cumbria, UK) after 28 years. River. Res. Applic., 23, 997–1015. http://dx.doi.org/10.1002/rra.102210.1002/rra.1022 Search in Google Scholar

[3] Baumann, Z. & Fisher N.S. (2011). Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Environ. Toxicol. Chem., 30(3), 747–756. http://dx.doi.org/10.1002/etc.43610.1002/etc.436 Search in Google Scholar

[4] Bervoets, L. Blust, R. de Wit M. Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut., 95(3), 345–356. http://dx.doi.org/10.1016/S0269-7491(96)00134-010.1016/S0269-7491(96)00134-0 Search in Google Scholar

[5] Bovero, S. Hankeln T. Michailova P. Schmidt E. & Sella G. (2002). Nonrandom chromosomal distribution of spontaneous breakpoints and satellite DNA clusters in two geographically distant populations of Chironomus riparius (Diptera, Chironomidae). Genetica, 115, 273–281. http://dx.doi.org/10.1023/A:102069722852510.1023/A:1020697228525 Search in Google Scholar

[6] Byrne, P. Reid I. & Wood P.J. (2010). Sediment geochemistry of streams draining abandoned lead/zinc mines in Central Wales: the Afon Twymyn. J. Soils Sediment, 10, 683–697. http://dx.doi.org/10.1007/s11368-009-0183-910.1007/s11368-009-0183-9 Search in Google Scholar

[7] Calmano, W. von der Kammer F. & Schwartz R. (2005). Characterization of redox conditions in soils and sediments: Heavy metals. In: Soil and Sediment Remediation [Lens, P. Grotenhuis T. Malina G. Tabak H. (eds)], IWA Publ., London UK, pp 102–120. Search in Google Scholar

[8] Canfield, T.J. Kemble N.E. Brumbaugh W.G. Dwyer F.J. Ingersoll C.G. & Fairchild J.F. (2009). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the Upper Clark Fork River, Montana. Environ. Toxicol. Chem., 13(12), 1999–2012. http://dx.doi.org/10.1002/etc.562013121310.1002/etc.5620131213 Search in Google Scholar

[9] Ciszewski, D. Aleksander-Kwaterczak U. Kubsik U. Kwandrans J. Pociecha A. Szarek-Gwiazda E. Tłoczek I. Waloszek A. & Wilk-Woźniak E. (2011). Interdisciplinary investigations of contamination effects of pond and stream waters and sediments in the Matylda catchment — an attempt to classification. In: Interdisciplinary Researches in Natural Sciences [Zieliński A. (ed.)], Institute of Geography, Jan Kochanowski Uniwersity, Kielce, pp. 29–46. Search in Google Scholar

[10] Clements, W.H. Cherry, D.S., Van Hassel J.H. (1992). Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): Evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences, 49(8), 1686–1694. http://dx.doi.org/10.1139/f92-18710.1139/f92-187 Search in Google Scholar

[11] Fittkau, J. E. (1962). Die Tanypodinen (Diptera: Chironomidae). die Tribus Anatopyniini, Macropelopiini und Pentaneurini. Abhandlungen zur Larvalsystematik der Insecten, 6, 1–453. Search in Google Scholar

[12] Fittkau, E.J. Roback S.S. (1983). 5. The larvae of Tanypodine (Diptera: Chironomidae) of the Holarctic region — Keys and diagnoses. Ent. scand. Suppl. 19, 33–110. Search in Google Scholar

[13] Florea, A.M. & Büsselberg D. (2006). Metals and metal compounds: occurrence, use, benefits and toxic cellular effects. Biometals, 19, 419–427. http://dx.doi.org/10.1007/s10534-005-4451-x10.1007/s10534-005-4451-x16841251 Search in Google Scholar

[14] Förstner, U. & Salomons W. (1980). Trace metal analysis in polluted sediments. Environ. Technol. Lett., 1, 494. http://dx.doi.org/10.1080/0959333800938400610.1080/09593338009384006 Search in Google Scholar

[15] Gower, A.M., Myers G. Kent M. & Foulkes M.E. (2006). Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshwat. Biol., 32(1), 199–221. http://dx.doi.org/10.1111/j.1365-2427.1994.tb00877.x10.1111/j.1365-2427.1994.tb00877.x Search in Google Scholar

[16] Hankeln, T. Rohwedder A. Weich B. & Schmidt E.R. (1994). Transposition of minisatellite-like DNA in Chironomus midges. Genome, 37(4), 542–549. http://dx.doi.org/10.1139/g94-07710.1139/g94-0777958820 Search in Google Scholar

[17] Ilkova, J. Hankeln T. Schmidt E. Michailova P. Petrova N. Sella G. & White K. (2007). Genome instability of Chironomus riparius Mg. and Chironomus piger Strenzke (Diptera, Chironomidae). Caryologia, 60(4), 299–308. Search in Google Scholar

[18] Ilkova, J., Cervella P., Zampicinini GP., Sella, G. & Michailova, P. (2013). Chromosomal breakpoints and transposable-element-insertion sites in salivary gland chromosomes of Chironomus riparius Meigen (Diptera, Chironomidae) from trace metal polluted stations. Acta Zool. Bulg. 65(1), 59–73. Search in Google Scholar

[19] Keyl, H. (1962). Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenische Beziehungen derArten. Chromosoma, 13, 496–541. Search in Google Scholar

[20] Keyl, H. (1965). A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia, 21, 191–193. http://dx.doi.org/10.1007/BF0214187810.1007/BF021418785844173 Search in Google Scholar

[21] Kiknadze, I.I. Shilova A. Kekris I. Shobanov N. Zelenzov N. Grebenjuk A. Istomina A. & Praslov B. (1991). Karyotype and morphology of larvae in Chironomini. Atlas. Novosibirsk, pp. 1–117. Search in Google Scholar

[22] King, M. (1993). Species evolution: the role of chromosome change. Cambridge University Press, Cambridge, UK, 336pp. Search in Google Scholar

[23] Kownacki A. (2011). Significance and Conservation of Chironomidae (Diptera, Insecta) in aquatic ecosystems of Poland. Forum Faun., 1(1), 4–11. (in Polish with English summary) Search in Google Scholar

[24] Lagadic, L. & Caquet T. (1998). Invertebrates in testing of environmental chemicals: Are they alternatives? Environ. Health Perspect., 106,suppl.2, 593–613. 10.1289/ehp.9810659315334159599707 Search in Google Scholar

[25] Lagrana, C. Apodaca D. & David C.P. (2011). Chironomids as biological indicators of metal contamination in aquatic environment. Int. J. Environ. Sci. Dev., 2(4), 306–310. http://dx.doi.org/10.7763/IJESD.2011.V2.14210.7763/IJESD.2011.V2.142 Search in Google Scholar

[26] Larner, B.L. Seen A.J. & Townsend A.T. (2006). Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the Certified Reference Material NIST 2711. Anal. Chim. Acta, 556, 444–449. http://dx.doi.org/10.1016/j.aca.2005.09.05810.1016/j.aca.2005.09.058 Search in Google Scholar

[27] Martinez, E.A., Moore B.C. Schaumloffel J. & Dasgupta N. (2004). Effects of exposure to a combination of zinc- and lead spiked sediments on mouthpart development and growth in Chironomus tentans. Environ. Toxicol. Chem., 23, 662–667. http://dx.doi.org/10.1897/02-51210.1897/02-51215285360 Search in Google Scholar

[28] Martinez, E.A. Moore B.C. Schaumloffel J. & Dasgupta N. (2009). Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments. Environ. Toxicol. Chem., 20(11), 2475–2481. 10.1002/etc.5620201112 Search in Google Scholar

[29] Michailova, P. (1989). The polytene chromosomes and their significance to the systematics of the family Chironomidae, Diptera. Acta Zool. Fenn., 186, 1–107. Search in Google Scholar

[30] Michailova, P. Ilkova J. Hankeln T. Schmidt E. Selvaggi A. Zampicinini G. & Sella G. (2009). Somatic breakpoints, distribution of repetitive DNA and non-LTR retrotransposon insertion sites in the chromosomes of Chironomus piger Strenzke (Diptera, Chironomidae). Genetica, 135, 137–148. http://dx.doi.org/10.1007/s10709-008-9263-910.1007/s10709-008-9263-918574700 Search in Google Scholar

[31] Michailova, P., Szarek-Gwiazda E. Kownacki A. & Warchałowska-Śliwa E. (2012a). Genomic alterations recorded in two species of Chironomidae (Diptera) in the Upper Jurassic limestone area of the Ojców National Park in Poland attributable to natural and anthropogenic factors. Eur. J. Entomol., 109, 479–490. http://dx.doi.org/10.14411/eje.2012.06110.14411/eje.2012.061 Search in Google Scholar

[32] Michailova, P., Sella G. & Petrova N. (2012b). Chironomids (Diptera) and their salivary gland chromosomes as indicators of trace metal genotoxicology. Ital. J. Zool., 79(2), 218–230. http://dx.doi.org/10.1080/11250003.2011.62208410.1080/11250003.2011.622084 Search in Google Scholar

[33] Midya, T. Bhaduri S. & Sarkar P. (2012). Failure in somatic pairing of 4th chromosome in Chironomus striatipennis Kieffer (Diptera: Chironomidae). The Bioscan, 7(2), 321–324. Search in Google Scholar

[34] Persaud, D. Jaagumagi R. & Hayton A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment, Queen’s Printer of Ontario, 27 pp. Search in Google Scholar

[35] Sarkar, P. Bhaduri S. Ghosh C. & Midya T. (2011). A study on the polymorphic fourth chromosome of Chironomus striatipennis (Kieffer). The Bioscan, 6(3), 383–387. Search in Google Scholar

[36] Sella, G. Bovero S. Ginepro M. Michailova P. Petrova N. Robotti C.A. & Zelano V. (2004). Inherited and somatic cytogenetic variability in palaearctic populations of Chironomus riparius Meigen (Diptera, Chironomidae). Genome, 47, 332–244. http://dx.doi.org/10.1139/g03-12810.1139/g03-128 Search in Google Scholar

[37] Sokal, R. & Rohlf F. (1995). Biometry. Third edition, W. Freeman, New York. Search in Google Scholar

[38] Waalkes, M. & Misra R. (1996). Cadmium carcinogenicity and genotoxicity. In: Toxicology of Metals [Chang, L.W. (ed.)], CRC Press, Boca Raton, pp. 231–241. Search in Google Scholar

[39] Warwick, W.F. (1988). Morphological deformities in Chironomidae (Diptera) larvae as biological indicators of toxic stress. In: Toxic Contaminants and Ecosystem Health. A Great Lakes Focus [Evan, M.S. (ed.)], John Wiley and Sons, New York. Search in Google Scholar

[40] Wiederholm, T. (ed.) (1983). Chironomidae for Holarctic Region. Keys and Diagnoses. Part 1 — Larvae. Ent. Scand. Suppl., 19, 1–435. Search in Google Scholar

[41] Wieslander, L. (1994). The Balbiani ring multigene family: coding sequences and evolution of a tissue-specific function. Proc. Nucleic Acids Res., 48, 275–313. 10.1016/S0079-6603(08)60858-2 Search in Google Scholar

[42] Winner, R. W. Boesel, M.W., Farrell M. P. (1980). Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 37(4), 647–655. http://dx.doi.org/10.1139/f80-08110.1139/f80-081 Search in Google Scholar

[43] Yousef, H. Afify A. Hasan H. & Meguid A. (2010). DNA damage in hemocytes of Schistocera gregaria (Orthoptera: Acrididae) exposed to contaminated food with cadmium and lead, Nat. Sci., 2(4), 292–297. Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences