Accès libre

Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae

À propos de cet article

Citez

[1] Al-Shehri, A.M. (2010). Toxin-producing blooms of the cyanobacterium Microcystis aeruginosa in rainwater ponds in Saudi Arabia. Oceanol. Hydrobiol. Stud. 4:173–189. Search in Google Scholar

[2] American Public Health Association (APHA), 1995, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC. Search in Google Scholar

[3] Bais, H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301: 1377–1380. http://dx.doi.org/10.1126/science.108324510.1126/science.108324512958360 Search in Google Scholar

[4] Becher, P.G., Beuchat J., Gademann K., Jüttner F. (2005). Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J. Nat. Prod. 68: 1793–1795. http://dx.doi.org/10.1021/np050312l10.1021/np050312l16378379 Search in Google Scholar

[5] Blom, J.F., Brütsch T., Barbaras D., Bethuel Y., Locher H.H., Hubschwerlen C., Gademann K. (2006). Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org. Lett. 8: 737–740. http://dx.doi.org/10.1021/ol052968b10.1021/ol052968b16468755 Search in Google Scholar

[6] Churro, C., Alverca E., Sam-Bento F., Paulino S., Figueira V.C., Bento A.J., Prabhakar S., Lobo A.M., Calado A.J., Pereira P. (2009). Effects of bacillamide and newly synthesized derivatives on the growth of cyanobacteria and microalgae cultures. J. Appl. Phycol. 21: 429–442. http://dx.doi.org/10.1007/s10811-008-9388-310.1007/s10811-008-9388-3 Search in Google Scholar

[7] Czaran, T.L., Hoekstra R.F., Pagie L. (2002). Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99:786–790. http://dx.doi.org/10.1073/pnas.01239989910.1073/pnas.01239989911738311792831 Search in Google Scholar

[8] Erhard, D. (2006). Allelopathy in aquatic environments. In M.J. Reigosa, N. Pedrol, L. Gonzalez, AA Dordrecht (Eds.) Allelopathy A Physiological Process with Ecological Implications. (pp. 433–450) The Netherlands Search in Google Scholar

[9] Erhard, D., Gross E.M. (2006). Allelopathic activity of Elodea Canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat. Bot. 85: 203–211. http://dx.doi.org/10.1016/j.aquabot.2006.04.00210.1016/j.aquabot.2006.04.002 Search in Google Scholar

[10] Figueredo, C.C., Giani A, Bird D.F. (2007). Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion?. J. Phycol. 43: 256–265. http://dx.doi.org/10.1111/j.1529-8817.2007.00333.x10.1111/j.1529-8817.2007.00333.x Search in Google Scholar

[11] Finney, D.J. (1963). Probit Analysis (rev. ed.) (pp. 165–175) San Diego Search in Google Scholar

[12] Gademann, K. (2007). Cyanobacterial Natural Products for the Inhibition of Biofilm Formation and Biofouling. Chimia 61: 373–377. http://dx.doi.org/10.2533/chimia.2007.37310.2533/chimia.2007.373 Search in Google Scholar

[13] Gross, E.M. (2003). Allelopathy in aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313–339. http://dx.doi.org/10.1080/71361085910.1080/713610859 Search in Google Scholar

[14] Gumbo, J.R., Ross G., Cloete, T.E. (2010). The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr. J. Biotechnol. 9: 663–671. Search in Google Scholar

[15] Jaki, B., Heilmann J., Sticher O. (2000). New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63: 1283–1285. http://dx.doi.org/10.1021/np000033s10.1021/np000033s11000038 Search in Google Scholar

[16] Jaki, B., Zerbe O., Heilmann J., Sticher O. (2001). Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod. 63:154–158. http://dx.doi.org/10.1021/np000297e10.1021/np000297e11429991 Search in Google Scholar

[17] Jeong, J., Jin H., Sohn C., Suh K., Hong Y. (2000). Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12: 37–43. http://dx.doi.org/10.1023/A:100813912905710.1023/A:1008139129057 Search in Google Scholar

[18] Kodani, S., Imoto A., Mitsutani A., Murakami M. (2002). Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J. Appl. Phycol. 14:109–114. http://dx.doi.org/10.1023/A:101953341401810.1023/A:1019533414018 Search in Google Scholar

[19] Krebs, C.J. (2000). Ecology: the experimental analysis of distribution and abundance. Benjamin-Cummings Publishing Company 2000 San Francisco, CA: Benjamin-Cummings Publishing Company Search in Google Scholar

[20] Lambers, H., Chapin F.S., Pons T.L. (1998). Plant physiological ecology. Springer-Verlag 1999 Berlin: Springer-Verlag http://dx.doi.org/10.1007/978-1-4757-2855-210.1007/978-1-4757-2855-2 Search in Google Scholar

[21] Leflaive, J., Ten-Hage L. (2006). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol. 52: 199–214. http://dx.doi.org/10.1111/j.1365-2427.2006.01689.x10.1111/j.1365-2427.2006.01689.x Search in Google Scholar

[22] Legrand, C., Rengefors K., Fistarol G.O., Granéli E. (2003). Allelopathy in phytoplankton-biochemical, ecological, and evolutionary aspects. Phycol. 42: 406–419. http://dx.doi.org/10.2216/i0031-8884-42-4-406.110.2216/i0031-8884-42-4-406.1 Search in Google Scholar

[23] Macías, F.A., Galindo J.L.G., Garcia-Diaz M.D., Galindo J.C.G. (2007). Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem Rev. 7: 155–178. http://dx.doi.org/10.1007/s11101-007-9065-110.1007/s11101-007-9065-1 Search in Google Scholar

[24] Mohamed, Z.A., Al Shehri A.M. (2009). Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia. J. Hazard. Mater. 172: 310–315. http://dx.doi.org/10.1016/j.jhazmat.2009.07.01010.1016/j.jhazmat.2009.07.01019640645 Search in Google Scholar

[25] Park, M.H., Han M.S., Ahn C.Y., Kim H.S., Yoon B.D., Oh H.M. (2006a). Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett. Appl. Microbiol. 43: 307–312. http://dx.doi.org/10.1111/j.1472-765X.2006.01951.x10.1111/j.1472-765X.2006.01951.x16910937 Search in Google Scholar

[26] Park, M.H., Hwang S.J., Ahn C.Y., Kim B.H., Oh H.M. (2006b). Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kutz. em. Elenkin. Bull. Environ. Cont. Toxicol. 77: 9–14. http://dx.doi.org/10.1007/s00128-006-1025-810.1007/s00128-006-1025-816832749 Search in Google Scholar

[27] Rastogi, R.P., Sinha R.P. (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27: 521–539. http://dx.doi.org/10.1016/j.biotechadv.2009.04.00910.1016/j.biotechadv.2009.04.009 Search in Google Scholar

[28] Rice, E.L. (1984) Allelopathy, 2nd edn. Academic Press, Orlando, (pp. 189–205) 10.1016/B978-0-08-092539-4.50010-1 Search in Google Scholar

[29] Smith, G.D., Doan N.T. (1999). Cyanobacterial metabolites with bioactivity against photosynthesis in Cyanobacteria, algae and higher plants. J. Appl. Phycol. 11: 337–344 http://dx.doi.org/10.1023/A:100811581834810.1023/A:1008115818348 Search in Google Scholar

[30] Stanier, R. Y. (1977). The position of cyanobacteria in the world of phototrophs. Carlsberg Res. Commun. 42: 77–98. http://dx.doi.org/10.1007/BF0290648710.1007/BF02906487 Search in Google Scholar

[31] Takamo, K., Igarashi S., Mikami H., Hino S. (2003). Causation of reversal simultaneity for diatom biomass and density of Phormidium tenue during the warm season in eutrophic Lake Barato, Japan. Limnol. 4: 73–78. http://dx.doi.org/10.1007/s10201-003-0094-110.1007/s10201-003-0094-1 Search in Google Scholar

[32] Uronen, P., Kuuppo P., Legrand C., Tamminen T. (2007). Allelopathic Effects of Toxic Haptophyte Prymnesium parvum Lead to Release of Dissolved Organic Carbon and Increase in Bacterial Biomass. Microbial. Ecol. 54: 183–193. http://dx.doi.org/10.1007/s00248-006-9188-810.1007/s00248-006-9188-8 Search in Google Scholar

[33] Vardi, A., Schatz D., Beeri K., Motro U., Sukenik A., Levine A., Kaplan A. (2002). Dinoflagellate cyanobacteria communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 12: 1767–1772. http://dx.doi.org/10.1016/S0960-9822(02)01217-410.1016/S0960-9822(02)01217-4 Search in Google Scholar

[34] Verschuere, L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. J. Microbiol. Mol. Biol. Rev. 64: 655–671. http://dx.doi.org/10.1128/MMBR.64.4.655-671.200010.1128/MMBR.64.4.655-671.20009900811104813 Search in Google Scholar

[35] Vivanco, J.M., Harsh H.P., Bais P., Stermitz F.R., Thelen G.C., Callaway R.M. (2004). Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol. Lett. 7: 285–292. http://dx.doi.org/10.1111/j.1461-0248.2004.00576.x10.1111/j.1461-0248.2004.00576.x Search in Google Scholar

[36] Volk, R. B. (2008) Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid. Microbiol. Res. 163: 307–313. http://dx.doi.org/10.1016/j.micres.2006.06.00210.1016/j.micres.2006.06.00216872816 Search in Google Scholar

[37] Volk, R.B. (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J. Appl. Phycol. 17: 339–34. http://dx.doi.org/10.1007/s10811-005-7292-710.1007/s10811-005-7292-7 Search in Google Scholar

[38] Volk, R.B. (2006). Antialgal activity of several cyanobacterial exometabolites. J. Appl. Phycol. 18: 145–151. http://dx.doi.org/10.1007/s10811-006-9085-z10.1007/s10811-006-9085-z Search in Google Scholar

[39] Volk, R.B. (2007). Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 19: 491–495. http://dx.doi.org/10.1007/s10811-007-9161-z10.1007/s10811-007-9161-z Search in Google Scholar

[40] Volk, R.B., Furkert F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161: 180–186. http://dx.doi.org/10.1016/j.micres.2005.08.00510.1016/j.micres.2005.08.00516427523 Search in Google Scholar

[41] Volk, R.B., Mundt S. (2006). Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 17: 339–347. http://dx.doi.org/10.1007/s10811-005-7292-710.1007/s10811-005-7292-7 Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences