Accès libre

Simultaneous accumulation of anatoxin-a and microcystins in three fish species indigenous to lakes affected by cyanobacterial blooms

À propos de cet article

Citez

[1] Adamovsky O., Kopp R., Hilscherova K., Babica P., Palikova M., Paskova V., Navratil S., Marsalek B., Blaha L., 2007, Microcystin kinetics ( bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environ. Toxicol. Chem. 26: 2687–2693. http://dx.doi.org/10.1897/07-213.110.1897/07-213.1 Search in Google Scholar

[2] Ballot A., Fastner J., Lantz M., Wiedner C., 2010, First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatchenkoi in northeastern Germany. Toxicon, 56: 964–971 http://dx.doi.org/10.1016/j.toxicon.2010.06.02110.1016/j.toxicon.2010.06.021 Search in Google Scholar

[3] Becker V., de Cardoso L., Motta Marques D., 2004, Development of Anabaena Bory ex Bornet & Flahault (Cyanobacteria) blooms in a shallow, subtropical lake in southern Brazil, Acta Limnol. Bras., 16: 306–317 Search in Google Scholar

[4] Berry J.P., Gantar M., Gibbs P.D., Schmale M.C. 2007, The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae, Comp. Bioch. Physiol. Part C, 145: 61–72 10.1016/j.cbpc.2006.07.011 Search in Google Scholar

[5] Bogialli S., Bruno M., Curini R., Di Corcia A., Lagana A., 2006, Simple and rapid determination of anatoxin-a in Lake water and Fish muscle tissue by liquid chromatography-tandem mass spectrometry, J. Chromatogr.A., 1122:180–185 http://dx.doi.org/10.1016/j.chroma.2006.04.06410.1016/j.chroma.2006.04.064 Search in Google Scholar

[6] Bradburn M., Lewis Jr W.M., McCutchan Jr J.H., 2012, Comparative adaptations of Aphanizpmenon and Anabaena for nitrogen fixation under weak irradiance. Freshwat. Biol., 57: 1042–1049. http://dx.doi.org/10.1111/j.1365-2427.2012.02765.x10.1111/j.1365-2427.2012.02765.x Search in Google Scholar

[7] Briand J.F., Robillot C., Quiblier-Lloberas C., Bernard C., 2002, A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies Arch. Hydrobiol., 153: 605–622 10.1127/archiv-hydrobiol/153/2002/605 Search in Google Scholar

[8] Bumke-Vogt C., Mailahn W., Chorus I., 1999, Anatoxin-a and neurotoxic Cyanobacteria in German lakes and reservoirs., Environ. Toxicol., 14: 117–125 http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<117::AID-TOX15>3.0.CO;2-V10.1002/(SICI)1522-7278(199902)14:1<117::AID-TOX15>3.0.CO;2-V Search in Google Scholar

[9] Carmichael W.W., 1992, Cyanobacteria secondary metabolites — the cyanotoxins. J. Appl. Bacteriol., 72: 445–459 http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.x10.1111/j.1365-2672.1992.tb01858.x Search in Google Scholar

[10] Carlson R.E., 1977, A trophic state index for lakes, Limnol. Oceanogr., 22: 361–369 http://dx.doi.org/10.4319/lo.1977.22.2.036110.4319/lo.1977.22.2.0361 Search in Google Scholar

[11] Cazenave J., Bistoni M.A., Pesce S.F., Wunderlin D.A., 2006, Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR, Aquat. Toxicol., 76: 1–12 http://dx.doi.org/10.1016/j.aquatox.2005.08.01110.1016/j.aquatox.2005.08.011 Search in Google Scholar

[12] Chen J., Xie P., Li L., Xu J., 2009, First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage, Toxicol. Sci., 108: 81–89 http://dx.doi.org/10.1093/toxsci/kfp00910.1093/toxsci/kfp009 Search in Google Scholar

[13] Codd, G., 2000, Cyanobacterial toxins, the parception of water quality, and the prioritisation of eutrophication control, Ecol. Eng., 16: 51–60 http://dx.doi.org/10.1016/S0925-8574(00)00089-610.1016/S0925-8574(00)00089-6 Search in Google Scholar

[14] Dikkeboom R., Van der Knaap W.P.W., Meuleman E.A., Sminia T., 1985, A comparative study on the internal defence system of juvenile and adult Lymnaea stagnalis, Immunology, 55: 547–553 Search in Google Scholar

[15] El Ghazali I., Saqrane S., Carvalho A.P., Ouahid Y., Del Campo F., Oudra B., Vasconcelos V., 2010, Effect of different microcystin profiles on toxin bioaccumulation in common carp (Cyprinus carpio) larvae via Artemia nauplii, Ecotox. Environ. Safety, 73: 762–770 http://dx.doi.org/10.1016/j.ecoenv.2009.12.01510.1016/j.ecoenv.2009.12.015 Search in Google Scholar

[16] Furey A., Crowley J., Hamilton B., Lehane M., James K.J., 2005, Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning, J. Chromat. A., 1082: 91–97 http://dx.doi.org/10.1016/j.chroma.2005.05.04010.1016/j.chroma.2005.05.040 Search in Google Scholar

[17] Golterman H.L., 1971, Methods for chemical analysis of fresh waters. Blackwell, IBP Handbook, Oxford, -, Edinburgh, pp. 166 Search in Google Scholar

[18] Grabowska M., Mazur-Marzec H., 2010, The effect of cyanobacterial blooms in the Siemianówka dam reservoir on the phytoplankton structure in the Narew river, Hydrobiol. Oceanol. Stud., 40:19–26 http://dx.doi.org/10.2478/s13545-011-0003-x10.2478/s13545-011-0003-x Search in Google Scholar

[19] Harada K.I., Tsuji K., Watanabe M.F., Kondo F., 1996, Stability of microcystins from cyanobacteria. III. Effect of pH and temperature, Phycologia, 35: 83–88 http://dx.doi.org/10.2216/i0031-8884-35-6S-83.110.2216/i0031-8884-35-6S-83.1 Search in Google Scholar

[20] Hardy J., 2008, Final Report. Washington State Recreational Guidance for Microcystins (Provisional) and Anatoxin-a (Interim/Provisional), Washington State Department of Health, Olympia, Washington, pp 19 Search in Google Scholar

[21] Ibelings B.W., Bruning K., de Jonge J., Wolfstein K., Dionisio Pires L., Postma J., Burger T., 2005, Distribution of microcystins in a lake foodweb: no evidence for biomagnification, Microbial. Ecol., 49: 487–500 http://dx.doi.org/10.1007/s00248-004-0014-x10.1007/s00248-004-0014-x Search in Google Scholar

[22] James K.J., Furey A., Sherlock I.R., Stack M.A., Twohing M., 1998, Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorometric detection, J. Chromatogr. A., 798: 147–157 http://dx.doi.org/10.1016/S0021-9673(97)01207-710.1016/S0021-9673(97)01207-7 Search in Google Scholar

[23] Kaya K., Sano T., 1999, Total microcystin determination using erythro-2-methyl-3-(methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard, Anal. Chim. Acta., 386: 107–112 http://dx.doi.org/10.1016/S0003-2670(99)00012-410.1016/S0003-2670(99)00012-4 Search in Google Scholar

[24] Kopp R., Mareš J., Palíková M., Navrátil S., Kubíček Z., Ziková A., Klávková J., Bláha L., 2009, Biochemical parameters of blood plasma and content of microcystins in tissues of common carp (Cyprinus carpio L.) from a hypertrophic pond with cyanobacterial water bloom, Aquacult. Res., 40: 1683–1693 http://dx.doi.org/10.1111/j.1365-2109.2009.02285.x10.1111/j.1365-2109.2009.02285.x Search in Google Scholar

[25] Kamjunke N., Schmidt K., Pfchlugmacher S., Mehner T., 2002, Consumption of cyanobacteria by roach (Rutilus rutilus): useful or harmful to the fish?, Freshwat. Biol., 47: 243–250 http://dx.doi.org/10.1046/j.1365-2427.2002.00800.x10.1046/j.1365-2427.2002.00800.x Search in Google Scholar

[26] Kolmakov V.I., Gladyshev M.I., 2003, Growth and potential photosynthesis of cyanobacteria are stimulated by viable gut passage in crucian carp, Aquat. Ecol., 37: 237–242 http://dx.doi.org/10.1023/A:102580132608810.1023/A:1025801326088 Search in Google Scholar

[27] Kotak B.G., Zurawell R.W., Prepas E.E., Holmes C.F.B., 1996, Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status, Can. J. Fish. Aquat. Sci., 53: 1974–1985 http://dx.doi.org/10.1139/cjfas-53-9-197410.1139/cjfas-53-9-1974 Search in Google Scholar

[28] Kurmayer R., Christiansen G., Fastner.J, Borner T., 2004, Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp, Environ. Microbiol., 6: 831–841 http://dx.doi.org/10.1111/j.1462-2920.2004.00626.x10.1111/j.1462-2920.2004.00626.x Search in Google Scholar

[29] Lance E., Brient L., Bormans M., Gérard C., 2006, Interactions between cyanobacteria and Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification, Aquat. Toxicol., 79: 140–148 http://dx.doi.org/10.1016/j.aquatox.2006.06.00410.1016/j.aquatox.2006.06.004 Search in Google Scholar

[30] Lawton L.A., Edwards C., Codd G.A., 1994, Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters, Analyst, 119: 1525–1530 http://dx.doi.org/10.1039/an994190152510.1039/an9941901525 Search in Google Scholar

[31] Li X.Y., Chung I.K., Kim J.I., Lee J.A., 2004, Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions, Toxicon 44: 821–827 http://dx.doi.org/10.1016/j.toxicon.2004.06.01010.1016/j.toxicon.2004.06.010 Search in Google Scholar

[32] Malbrouck C., Kestemont P., 2006, Effects of microcystins on fish, Environ. Toxicol. Chem., 25: 72–86 http://dx.doi.org/10.1897/05-029R.110.1897/05-029R.1 Search in Google Scholar

[33] Mazur-Marzec H., 2006, Characterization of phycotoxins produced by Cyanobacteria, Oceanol. Hydrobiol. Stud., 35: 85–109 Search in Google Scholar

[34] Oberemm A., Fastner J., Steinberg C.E.W., 1997. Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio), Wat. Res., 11: 2918–2921 http://dx.doi.org/10.1016/S0043-1354(97)00120-610.1016/S0043-1354(97)00120-6 Search in Google Scholar

[35] Osswald J., Azevedo J., Vasconcelos V., Guilhermino L., 2011, Experimental determination of the bioconcentration factors for anatoxin-a in juvenile rainbow trout (Oncorhynchus mykiss). Proc. Intern.Ac. Ecol. Environ. Sci., 1(2): 77–86 Search in Google Scholar

[36] Osswald J, Carvalho A, Claro J., Vasconcelos V., 2009a, Effects of cyanobacterial extracts containing anatoxin-a and of pure anatoxin-a on early developmental stages of carp. Ecotoxicology and Environmental Safety, 72: 473–478 http://dx.doi.org/10.1016/j.ecoenv.2008.05.01110.1016/j.ecoenv.2008.05.01118640721 Search in Google Scholar

[37] Osswald J., Rellan S., Gago-Martinez A., Vasconcelos V., 2009b, Production of anatoxin-a by cyanobacterial strains isolated from Portugese fresh water systems, Ecotoxicology, 18: 1100–1115 http://dx.doi.org/10.1007/s10646-009-0375-510.1007/s10646-009-0375-5 Search in Google Scholar

[38] Osswald J., Rellán S., Carvalho A.P., Gago A., Vasconcelos V., 2007, Acute effects of an anatoxin-a producing cyanobacterium on juvenile fish — Cyprinus carpio L, Toxicon, 49: 693–698 http://dx.doi.org/10.1016/j.toxicon.2006.11.01010.1016/j.toxicon.2006.11.010 Search in Google Scholar

[39] Ozawa K., Yokoyama A., Ishikawa K., Kumagai M., Watanabe M.F., Park H.D., 2003, Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail, Limnology, 4: 131–138 http://dx.doi.org/10.1007/s10201-003-0106-110.1007/s10201-003-0106-1 Search in Google Scholar

[40] Papadimitriou O., Kagalou I., Bacopoulos V., Leonardos I., 2010, Accumulation of microcystins in water and fish tissues: an estimation of risks associated with microcystins in most of the Greek lakes, Environ. Toxicol., 25: 418–427 http://dx.doi.org/10.1002/tox.2051310.1002/tox.20513 Search in Google Scholar

[41] Pawlik-Skowrońska B., Pirszel J., Kornijów R., 2008, Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhiii in a hypertrophic lake, Ann. Limnol. — Int. J. Lim., 44: 63–68 http://dx.doi.org/10.1051/limn:200802310.1051/limn:2008023 Search in Google Scholar

[42] Pawlik-Skowrońska B., Skowroński T., Pirszel J., Adamczyk A., 2004, Relationship between cyanobacterial bloom and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland), Pol. J. Ecol., 52: 479–490 Search in Google Scholar

[43] Pawlik-Skowrońska B., Toporowska M., 2011, Blooms of toxin-producing Cyanobacteria — a real threat in small dam reservoirs at the beginning of their operation, Hydrobiol. Oceanol. Stud., 40(4): 30–37 http://dx.doi.org/10.2478/s13545-011-0038-z10.2478/s13545-011-0038-z Search in Google Scholar

[44] Pflugmacher S., Wiegand C., Oberemm A., Beattie K.A., Krause E., Codd G.A., 1998, Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification, Biochim. Biophys. Acta., 142: 527–533 http://dx.doi.org/10.1016/S0304-4165(98)00107-X10.1016/S0304-4165(98)00107-X Search in Google Scholar

[45] Rücker J., Wiedner C., Zippel P., 1997, Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes, Hydrobiologia, 342/343: 107–115 http://dx.doi.org/10.1023/A:101701320803910.1023/A:1017013208039 Search in Google Scholar

[46] Rantala-Ylinen A., Kana S., Wang H, Rouhiainen L., Wahlsten M., Rizzi E., Berg K., Gugger M., Sivonen K., 2011, Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. Strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol., 77: 7271–7278 http://dx.doi.org/10.1128/AEM.06022-1110.1128/AEM.06022-11319486621873484 Search in Google Scholar

[47] Rymuszka A., Sierosławska A., 2010, Study on apoptotic effects of neurotoxin anatoxin-a on fish immune cells, Neuro. Endocrinol. Lett., 31Suppl. 2: 11–15 Search in Google Scholar

[48] Sivonen K., Himberg K., Luukkainen R., Niemela S.I., Poon G.K., Codd G.A., 1989, Preliminary Characterization of neurotoxic cyanobacteria blooms and strains from Finland, Toxicol. Assess., 4: 339–352 http://dx.doi.org/10.1002/tox.254004031010.1002/tox.2540040310 Search in Google Scholar

[49] Sivonen K., Niemelä S.I., Niemi R.M., Lepistö L., Luoma T.H., Räsänen L.A., 1990, Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters, Hydrobiologia, 190: 267–275 http://dx.doi.org/10.1007/BF0000819510.1007/BF00008195 Search in Google Scholar

[50] Smith et al. 2008 Search in Google Scholar

[51] Sotero-Santos R.B., Dellamano-Oliveira M.J., Carvalho E.G., Rocha O., 2008, Composition and toxicity of cyanobacterial bloom in a tropical reservoir. Harmful Algae, 7/5: 590–598 http://dx.doi.org/10.1016/j.hal.2007.12.01710.1016/j.hal.2007.12.017 Search in Google Scholar

[52] Toporowska M., Pawlik-Skowrońska B., Krupa D., Kornijów R., 2010, Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions, Pol. J. Ecol., 58: 159–168 Search in Google Scholar

[53] Utermöhl H., 1958, Zur Vervollkommung der quantitative Phytoplanktonmethodik, Mitt. Internat. Verein. Limnol., 2: 1–38 10.1080/05384680.1958.11904091 Search in Google Scholar

[54] Van Apeldoorn M.E., van Egmond H.P., Speijers G.J.A., Bakker G.J.I., 2007, Toxins of cyanobacteria. A review, Mol. Nutr. Food Res., 51: 7–60 http://dx.doi.org/10.1002/mnfr.20060018510.1002/mnfr.20060018517195276 Search in Google Scholar

[55] Welker M., Döhren H., 2006, Cyanobacterial peptides — nature’s own combinatorial biosynthesis, FEMS Microbiol. Rev., 30: 530–563 http://dx.doi.org/10.1111/j.1574-6976.2006.00022.x10.1111/j.1574-6976.2006.00022.x16774586 Search in Google Scholar

[56] WHO, 1999, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, Routledge London and New York Search in Google Scholar

[57] Wilson A.E., Sarnelle O., Tillmanns A.R., 2006, Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments, Limnol. Oceanogr., 51: 1915–1924 http://dx.doi.org/10.4319/lo.2006.51.4.191510.4319/lo.2006.51.4.1915 Search in Google Scholar

[58] Zhang D., Xie P., Chen Y., Dai M., Qiu T., Liu Y., Liang G., 2009, Determination of microcystin-LR and its metabolites in snail (Bellemya aeruginosa), shrimp (Macrobrachium nipponensis) and silver carp (Hypophthalmichthys molitrix) from lake Taihu, China, Chemosphere, 76: 974–981 http://dx.doi.org/10.1016/j.chemosphere.2009.04.03410.1016/j.chemosphere.2009.04.03419473685 Search in Google Scholar

[59] Xie L.Q., Xie P., Guo L.G., Li L., Miyabara Y., Park H.D., 2005, Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China, Environ. Toxicol., 20: 293–300 http://dx.doi.org/10.1002/tox.2012010.1002/tox.2012015892067 Search in Google Scholar

[60] Xie L., Xie P., Ozawa K., Honma T., Yokoyama A., Park H-D., 2004, Dynamics of microcystins-LR and _RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ. Pollut. 127: 431–439 http://dx.doi.org/10.1016/j.envpol.2003.08.01110.1016/j.envpol.2003.08.01114638304 Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences