Accès libre

Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (Southern Baltic)

À propos de cet article

Citez

[1] Amouroux D., Roberts G. Rapsomanikis S., Andreae M. O., 2002. „Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near shore and shelf waters of the north western Black Sea.” Estuar. Coast. Shelf Sci., 54, 575–587, doi:10.1006/ecss.2000.0666. http://dx.doi.org/10.1006/ecss.2000.066610.1006/ecss.2000.0666 Search in Google Scholar

[2] Bange H. W. Bartell U. H., Rapsomanikis S., Andreae M. O., 1994. „Methane in Baltic and North Seas and a reassessment of the marine emissions of methane.” Global Biogeochem Cycles, 8, 465–480. http://dx.doi.org/10.1029/94GB0218110.1029/94GB02181 Search in Google Scholar

[3] Bolałek J., 1993. „Krążenie materii między wodą naddenną, a osadem na przykładzie Zatoki Puckiej.” Rozprawy i monografie nr 186, UG Gdańsk (in Polish). Search in Google Scholar

[4] Bolałek J., Falkowska L., Korzeniewski K., 1993. „Hydrochemia Zatoki [in:] Zatoka Pucka, Korzeniewski K. (ed.).” Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, pp. 222–81 (in polish). Search in Google Scholar

[5] Bolałek J., Jankowska H., Łęczyński L., Frankowski L., Podgórska B., 1996. „Geological, geochemical and bacteriological conditions in the postdredging pit in Puck Bay (Southern Baltic, Poland).” Oceanological Studies, 25(3): 111–22. Search in Google Scholar

[6] Chanton J. P., Martens Ch. S., Kelly Ch. A., 1989. Gas transport from methane saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr., vol. 34(5), 807–819. http://dx.doi.org/10.4319/lo.1989.34.5.080710.4319/lo.1989.34.5.0807 Search in Google Scholar

[7] Christian H. A., Cranston R. E., 1997. „A methodology for detecting free gas in marine sediments.” Can. Geotech. J., 34(2): 293–304, doi:10.1139/cgj-34-2-293. 10.1139/t96-116 Search in Google Scholar

[8] DeLaune R. D., Smith Ch. J., Patrick W. H., 1983. „Methane release from Gulf coast wetlands.” Tellus, 35B, 8–15. http://dx.doi.org/10.1111/j.1600-0889.1983.tb00002.x10.1111/j.1600-0889.1983.tb00002.x Search in Google Scholar

[9] DelSontro T., McGinnis D. F., Sobek S., Ostrovsky I., Wehrli B., 2010. Extreme methane emission from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ. Sci. Technol. Vol. 44, 2419–2425. http://dx.doi.org/10.1021/es903136910.1021/es903136920218543 Search in Google Scholar

[10] Edlung A., 2007. „Microbial diversity in Baltic Sea sediment.” Doctoral thesis. Swedish University of Agricultural Science, Uppsala. Search in Google Scholar

[11] Fisher B. S., Nakicenovic N., Alfsen K., Corfee Morlot J., de la Chesnaye F., Hourcade J. Ch., Jiang K., Kainuma M., La Rovere E., Matysek A., Rana A., Riahi K., Richels R., Rose S., van Vuuren D., Warren R., 2007: Issues related to mitigation in the long-term context, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Metz B., Davidson O. R., Bosch P. R., Dave R., Meyer L. A. (eds.)], Cambridge University Press, Cambridge. Search in Google Scholar

[12] Galchenko V. F., Lein A. Y., Ivanov M. V., 2004. „Methane Content in the Bottom Sediments and Water Column of the Black Sea.” Microbiology, 73(2), 211–223, doi: 10.1023/B:MICI.0000023991.50280.58. http://dx.doi.org/10.1023/B:MICI.0000023991.50280.5810.1023/B:MICI.0000023991.50280.58 Search in Google Scholar

[13] Geringer d’Oedenberg Małgorzata, 2000. „Rola makrofauny bentosowej w strumieniach tlenu i azotu nieorganicznego między osadem a wodą przydenna w przybrzeżnej strefie Zatoki Puckiej.” Praca doktorska. Uniwersytet Gdański (in Polish). Search in Google Scholar

[14] Graca B., 2004. „Denitrification in the sediments of the inner Puck Bay — Preliminary results.” Ocean. Hydrob. Studies., 33(4) 73–91. Search in Google Scholar

[15] Graca B., 2009. „The Puck Bay as an example of deep dredging unvaforably affecting the aquatic environment.” Oceanol. Hydrobiol. Stud., 38(2) 109–127, doi: 10.2478/v10009-009-0016-6. http://dx.doi.org/10.2478/v10009-009-0016-610.2478/v10009-009-0016-6 Search in Google Scholar

[16] Graca B., Dudkowiak M., 2007. „Microbiological changes in the environment caused by deep dredging. A case study: post-dredging pit Kuźnica II (Puck Bay).” Ocean. Hydrob. Studies., 36(1) 17–27, doi: 10.2478/v10009-007-0005-6. http://dx.doi.org/10.2478/v10009-007-0005-610.2478/v10009-007-0005-6 Search in Google Scholar

[17] Happel. D., Chanton J. P., 1995. „Methane transfer across the water-air interface in stagnant wooded swamps of Florida: Evaluation of mass-transfer coefficients and isotopic fractionation.” Limnol. Oceanogr., 40(2), 290–298. http://dx.doi.org/10.4319/lo.1995.40.2.029010.4319/lo.1995.40.2.0290 Search in Google Scholar

[18] Heyer J., Berger U., 2000. „Methane emission from the Coastal Area in the Southern Baltic Sea.” Estuar. Coast. Shelf. Sci., 51(1), 13–30, doi:10.1006/ecss.2000.0616 http://dx.doi.org/10.1006/ecss.2000.061610.1006/ecss.2000.0616 Search in Google Scholar

[19] IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)], IPCC, Geneva, Switzerland. Search in Google Scholar

[20] Jankowska H., Łęczyński L., 1993. Geologia i geomorfologia [in:] Zatoka Pucka, Korzeniewski K. (ed.). Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, pp. 532 (in polish). Search in Google Scholar

[21] Jensen J. B., Fossing H., 2005. Methane in the seabed sediments of the south-western Baltic Sea. Geophysical Research Abstracts, 7, 04438. Search in Google Scholar

[22] Jorgensen B. B., Bang M., Blackburn T. H., 1990. „Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition.” Marine Ecology Progress Series, 59, 39–54. http://dx.doi.org/10.3354/meps05903910.3354/meps059039 Search in Google Scholar

[23] Judd A. G., Hovland M., 2007. „Seabed fluid flow: the impact of geology, biology and the marine environment.” Cambridge University Press, pp. 475. 10.1017/CBO9780511535918 Search in Google Scholar

[24] Liikanen A., Silvennoinen H., Karvo A., Rantakokko P., Martikainen P. J., 2009. „Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea”. Boreal Env. Res., 14, 351–368. Search in Google Scholar

[25] Martens Ch. S., Albert D. B., Alperin M. J., 1999. „Stable isotope tracing of anaerobic methane oxidation in the Gassy sediments of Eckernförde Bay, German Baltic Sea.” American J. Scie., 299, 589–610. http://dx.doi.org/10.2475/ajs.299.7-9.58910.2475/ajs.299.7-9.589 Search in Google Scholar

[26] Mathys M., Thiessen O., Theilen F., Schmidt M., 2005. „Seismic characterization of gas-rich near surface sediments in the Arkona Basin, Baltic Sea.” Marine Geophysical Researches., 26(2–4), 207–224. http://dx.doi.org/10.1007/s11001-005-3719-410.1007/s11001-005-3719-4 Search in Google Scholar

[27] McGuire A. D., Chapin F. S., III, Walsh J. E., Wirth C., 2006. „Integrated regional change in Arctic climate feedbacks: Implication for the Global Climate System.” Annu. Rev. Environ. Resour., 31(1), 61–91, doi:10.1146/annurev.energy.31.020105.100253. http://dx.doi.org/10.1146/annurev.energy.31.020105.10025310.1146/annurev.energy.31.020105.100253 Search in Google Scholar

[28] Nowacki J., 1993b. Termika, zasolenie i gęstość wody. [in:] Zatoka Pucka, Korzeniewski K. (ed.). Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, pp. 532 (in polish). Search in Google Scholar

[29] Piker L., Schmaljohann R., Imhoff J. F., 1998. Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993- 1996).” Aquatic Microbial Ecology., 14, 183–193. http://dx.doi.org/10.3354/ame01418310.3354/ame014183 Search in Google Scholar

[30] Schlüter M., Sauter E. J., 2004. Spatial distribution and budget for submarine groundwater discharge in Eckenförde Bay (Western Baltic Sea). Limnology and Oceanography, 49(1), 157–167. http://dx.doi.org/10.4319/lo.2004.49.1.015710.4319/lo.2004.49.1.0157 Search in Google Scholar

[31] Schmaljohann R., 1996. „Methane Dynamics in the sediment and water column of Kiel Harbour (Baltic Sea).” Mar. Ecol. Prog. Ser., 131, 263–273. http://dx.doi.org/10.3354/meps13126310.3354/meps131263 Search in Google Scholar

[32] Serreze M. C., Holland M. M., Stroeve J., 2007. „Perspectives on the Arctic’s shrinking Sea-Ice Cover.” Science, 315, 1533–1536. http://dx.doi.org/10.1126/science.113942610.1126/science.113942617363664 Search in Google Scholar

[33] Sommer S., Pfannkuche O., Linke P., Luff R., Greinert J., Drews M., Gubsch S., Pieper M., Poser M., Viergutz T., 2006. „Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates AT Hydrate Ridge.” Global Biogeochem. Cycles, 20, 1–14, doi:10.1029/2004GB002389. http://dx.doi.org/10.1029/2004GB00238910.1029/2004GB002389 Search in Google Scholar

[34] Thiessen O., Schmidt M., Theilen F., Schmitt M., Klein G., 2006. Methane formation and distributionof acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea. Cont. Shelf Res., vol. 26(19), 2469–2483, DOI:10.1016/j.csr.2006.07.020 http://dx.doi.org/10.1016/j.csr.2006.07.02010.1016/j.csr.2006.07.020 Search in Google Scholar

[35] Tortell P. D., 2005. „Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry.” Limnol. Oceanogr.: Methods, 3, 24–37. http://dx.doi.org/10.4319/lom.2005.3.2410.4319/lom.2005.3.24 Search in Google Scholar

[36] Urban N. R., Dinkel Ch., Wehrli B., 1997. „Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers.” Aquat. Sci., 59, 1–25. http://dx.doi.org/10.1007/BF0252254610.1007/BF02522546 Search in Google Scholar

[37] Wegener G., 2008. Methane oxidation and carbon assimilation in marine sediments. Doctoral thesis. Bremen University. Search in Google Scholar

[38] Wilkens R. H., Richardson M. D., 1998. The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckenförde Bay, Baltic Sea.” Continental Shelf Research, 18, 1859–1892. http://dx.doi.org/10.1016/S0278-4343(98)00061-210.1016/S0278-4343(98)00061-2 Search in Google Scholar

[39] Witkowski A., 1993. „Mikrofitobentos”, [in:] „Zatoka Pucka”, Korzeniewski K. (ed.) Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, pp. 395–415. Search in Google Scholar

[40] Zeikus J.G., Winfrey M. R., 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol., vol. 31(1), 99–107. 10.1128/aem.31.1.99-107.1976169725821396 Search in Google Scholar

eISSN:
1897-3191
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, other, Geosciences, Life Sciences