This work is licensed under the Creative Commons Attribution 4.0 International License.
Fortune Business Insight (April 2025) [Online]. [Accessed 11.05.2025]. Available: https://www.fortunebusinessinsights.com/leather-goods-market-104405.Search in Google Scholar
Amobonye A., Lalung J., Awasthi M. K., Pillai S. Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry. Sustainable Materials and Technologies 2023:38:e00724. https://doi.org/10.1016/j.susmat.2023.e00724Search in Google Scholar
Li S., Cao S., Wang X., Zhang Y., Zhang X., Lu W., Zhu D. Investigating the mechanism of Zn cross-linking of chitin in a mycelium-based leather substitute and its performance evaluation. International Journal of Biological Macromolecules 2024:276(2):133954. https://doi.org/10.1016/j.ijbiomac.2024.133954Search in Google Scholar
Vandelook S., Elsacker E., Van Wylick A., De Laet L., Peeters E. Current state and future prospects of pure mycelium materials. Fungal Biology and Biotechnology 2021:8:20. https://doi.org/10.1186/s40694-021-00128-1Search in Google Scholar
Peeters E., Saluena M., Vandelook S. Growing sustainable materials from filamentous fungi. The Biochemist 2023:45(3):8–13. https://doi.org/10.1042/bio_2023_120Search in Google Scholar
D’Errico A., Schröpfer M., Mondschein A., Safeer A. A., Baldus M., Wösten H. A. B. Cross-linking impacts the physical properties of mycelium leather alternatives by targeting hydroxyl groups of polysaccharides and amino groups of proteins. Heliyon 2024:10(16):e36263. https://doi.org/10.1016/j.heliyon.2024.e36263Search in Google Scholar
Fuck W. F., Gutterres M., Marcílio N. R., Bordingnon S. The influence of Chromium supplied by tanning and wet finishing processes on the formation of Cr(VI) in leather. Brazilian Journal of Chemical Engineering 2011:28:221–228. https://doi.org/10.1590/S0104-66322011000200006Search in Google Scholar
Agency for Toxic Substances and Disease Registry (ATSDR) (April 2025) [Online]. [Accessed 11.05.2025]. Available: https://www.atsdr.cdc.gov/Search in Google Scholar
Elsacker E., Vandelook S., Peeters E. Recent technological innovations in mycelium materials as leather substitutes: a patent review. Frontiers in Bioengineering and Biotechnology 2023:11:1204861. https://doi.org/10.3389/fbioe.2023.1204861Search in Google Scholar
Raman J., Kim D.-S., Kim H.-S., Oh D.-S., Shin H.-J. Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. Journal of Fungi 2022:8:317. https://doi.org/10.3390/jof8030317Search in Google Scholar
Shankar M. P., Hamza A., Khalad A., Shanthi G., Kuppireddy S., Kumar D. S. Engineering mushroom mycelium for a greener built environment: Advancements in mycelium-based biocomposites and bioleather. Food Bioscience 2024:62:105577. https://doi.org/10.1016/j.fbio.2024.105577Search in Google Scholar
Wiedemann L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. EUBCE Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14Search in Google Scholar
Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behavior of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42(2):1099–1104. https://doi.org/10.1039/C7NJ03199HSearch in Google Scholar
Williams E., Cenian K., Golsteijn L., Morris B., Scullin M. L. Life cycle assessment of MycoWorks’ ReishiTM: the first low-carbon and biodegradable alternative leather. Environmental Sciences Europe 2022:34:120. https://doi.org/10.1186/s12302-022-00689-xSearch in Google Scholar
Bitting S., Derme T., Lee J., Mele T. V., Dillenburger B., Block P. Challenges and Opportunities in Scaling up Architectural Applications of Mycelium-Based Materials with Digital Fabrication. Biomimetics 2022:7(2):44. https://doi.org/10.3390/biomimetics7020044Search in Google Scholar
Huq T., Khan A., Brown D., Dhayagude N., He Z., Ni Y. Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts 2022:7(2):85–98. https://doi.org/10.1016/j.jobab.2022.01.002Search in Google Scholar
Kato Y., Kaminaga J., Matsuo R., Isogai A. TEMPO-mediated oxidation of chitin, regenerated chitin and -acetylated chitosan. Carbohydrate Polymers 2004:58(4):421–426. https://doi.org/10.1016/j.carbpol.2004.08.011Search in Google Scholar
Olde D. L. H. H., Dijkstra P. J., Van Luyn M. J. A., Van Wachem P. B., Nieuwenhuis P., Feijen J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine 1995:6:460–472. https://doi.org/10.1007/BF00123371Search in Google Scholar
Crawford A., Ruthanna Miller S., Branco S., Fletcher J., Stefanov D. Growing mycelium leather: a paste substrate approach with post-treatments. Research Directions: Biotechnology Design 2024:2:e6. https://doi.org/10.1017/btd.2024.6Search in Google Scholar
Song L., Liu Y., Xiao S., Yuan X., Han X. Revolutionizing Eco-Friendly Leather Production: A Freeze-Thaw and Liquid Fermentation Approach with Fungal Mycelium. Journal of Fungi 2025:11:326. https://doi.org/10.3390/jof11040326Search in Google Scholar
Theamdee P., Auasalung T. The Effect of Glycerol Content on Physical and Mechanical Properties of the Biodegradable Film from Sweet Potato Flour for Preserving Namwa Banana. Life Sciences and Environment Journal 2019:20:70–80.Search in Google Scholar
Deeg K., Gima Z., Smith A., Stoica O., Tran K. Greener Solutions: Improving performance of mycelium-based leather. Final Report to MycoWorks 2017.Search in Google Scholar
Pilz M., Castellan N., Conti F., Qoura F., Brueck T. Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production. Environmental and Climate Technologies 2024:28(1):510–526. https://doi.org/10.2478/rtuect-2024-0040Search in Google Scholar
Appels F. V. W., Van Den Brandhof J. G., Dijksterhuis J., De Kort G. W., Wösten H. A. B. Fungal mycelium classified in different material families based on glycerol treatment. Communications Biology 2020:3:334. https://doi.org/10.1038/s42003-020-1064-4Search in Google Scholar
Wang J., Mutalik R. B., Smith M. J., Subler N. E., McKenzie L., Collins I. S., Flowers K., Addy V., McAusland Bainbridge J., Heinrich M. J. Methods of generating materials with improved properties. U.S. Patent 0007777A1, Jan. 31, 2022.Search in Google Scholar
] Utami Hatmi R., Apriyati E., Cahyaningrum N. Edible coating quality with three types of starch and sorbitol plasticizer. E3S Web of Conferences 2020:142:02003. https://doi.org/10.1051/e3sconf/202014202003Search in Google Scholar
Montalti M., Babbini S., Gandia A. Method of producing fungal mats and materials made therefrom. Patent 102018000010869, Jan. 06, 2020.Search in Google Scholar
Naranjo-Briceno L., Fuentes K. M., Escalona G., Rebolledo de Lima H., Figueroa J. M., Zamora P. Nanoemulsion for internal himectation of mycelium-based textiles. Patent WO 040954A1, Feb. 27, 2022.Search in Google Scholar
Farrahnoor A., Sazali N.A.A., Yusoff H., Zhou B. T. Effect of Beeswax and Coconut Oil as Natural Coating Agents on Morphological, Degradation Behaviour, and Water Barrier Properties of Mycelium-Based Composite in Modified Controlled Environment. Progress in Organic Coatings 2024:196:108763. https://doi.org/10.1016/j.porgcoat.2024.108763Search in Google Scholar
Thombare N., Kumar S., Kumari U., Sakare P., Yogi R. K., Prasad N., Sharma K. K. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. International Journal of Biological Macromolecules 2022:215:203–223. https://doi.org/10.1016/j.ijbiomac.2022.06.090Search in Google Scholar
Akhter S., Jahan M. S., Rahman M. L., Ruhane T. A., Ahmed M., Khan M. A. Revolutionizing Sustainable Fashion: Jute–Mycelium Vegan Leather Reinforced with Polyhydroxyalkanoate Biopolymer Crosslinking from Novel Bacteria. Advances in Polymer Technology 2024:1–10. https://doi.org/10.1155/2024/1304800Search in Google Scholar
Kniep J., Graupner N., Reimer J. J., Müssig J. Mycelium-based biomimetic composite structures as a sustainable leather alternative. Materials Today Communications 2024:39:109100. https://doi.org/10.1016/j.mtcomm.2024.109100Search in Google Scholar
Chen H., Klemm S., Dönitz A. G., Ou Y., Schmidt B., Fleck C., Simon U., Völlmecke C. Tailoring the Mechanical Properties of Fungal Mycelium Mats with Material Extrusion Additive Manufacturing of PHBH and PLA Biopolymers. ACS Omega 2024:9(50):49609. https://doi.org/10.1021/acsomega.4c07661Search in Google Scholar
Madusanka C., Udayanga D., Nilmini R., Rajapaksha S., Hewawasam C., Manamgoda D., Vasco-Correa J. A review of recent advances in fungal mycelium based composites. Discover Materials 2024:4:13. https://doi.org/10.1007/s43939-024-00084-8Search in Google Scholar