Accès libre

Heat Loss Determination of District Heating Pipelines. A Comparison of Numerical and Analytical Methods

, ,  et   
30 déc. 2024
À propos de cet article

Citez
Télécharger la couverture

Hansen K., Connolly D., Lund H., Drysdale D., Thellufsen J. Z. Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat. Energy 2016:115:1663–71. https://doi.org/10.1016/j.energy.2016.06.033Search in Google Scholar

Nilsson S. F. New developments in pipes and related network components for district heating. In: Advanced District Heating and Cooling (DHC) Systems, 2016:191–214. https://doi.org/10.1016/B978-1-78242-374-4.00009-4Search in Google Scholar

Weidlich I., Grajcar M. Expected potential of bound and recycled backfill material in low temperature district heating networks. Energy Procedia 2017:128:150–6. https://doi.org/10.1016/j.egypro.2017.09.035Search in Google Scholar

Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–18. https://doi.org/10.1016/j.energy.2011.01.024Search in Google Scholar

Wang H., Meng H., Zhu T. New model for onsite heat loss state estimation of general district heating network with hourly measurements. Energy Conversion and Management 2018:157:71–85. https://doi.org/10.1016/j.enconman.2017.11.062Search in Google Scholar

Madan V., Weidlich I. Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks. Environmental and Climate Technologies 2021:25(1):479–490. https://doi.org/10.2478/rtuect-2021-0035Search in Google Scholar

Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., editors. Proceedings of SIMS 2004: 45th International Conference of Scandinavian Simulation Society, 2004.Search in Google Scholar

Perpar M., Rek Z., Bajric S., Zun I. Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation. Energy 2012:44(1):197–210. https://doi.org/10.1016/j.energy.2012.06.037Search in Google Scholar

Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy 2016:108:172–84. https://doi.org/10.1016/j.energy.2015.07.012Search in Google Scholar

Bøhm B. On transient heat losses from buried district heating pipes. International Journal of Energy Research 2000:24(15):1311–34. https://doi.org/10.1002/1099-114X(200012)24:15<1311::AID-ER648>3.0.CO;2-QSearch in Google Scholar

CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks - Part: Design, 2021.Search in Google Scholar

Zeitler M. Berechnungsverfahren zur Bestimmung des Wärmeverlustes von verschiedenen Verlegesystemen erdverlegter Rohrleitungen (Calculation method for determining the heat loss of various underground pipe laying systems). [Online]. [Accessed 10.08.2024]. Available: https://fiwmuenchen.de/media/publikationen/pdf/FIWSonderdruck_Reihe2_Nummer13_Zeitler_Betriebsw%C3%A4rmeleitf%C3%A4higkeit-industriellerbetriebstechnischer-Anlagen_wksb_1985.pdf (In German).Search in Google Scholar

Wallentén P. Steady-state heat loss from insulated pipes. Licentiate Thesis. Division of Building Physics; 1991.Search in Google Scholar

Lund H., Werner S., Wiltshire R., Svendsen S., Thorsen J. E., Hvelplund F. et al. 4th Generation District Heating (4GDH). Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.089Search in Google Scholar

Dahlem K.-H. Der Einfluß des Grundwassers auf den Wärmeverlust erdreichberührter Bauteile. (The effect of groundwater on the heat loss of building parts in contact with the ground). Promotionsschrift. Berichte aus Praxis und Forschung des Fachgebiets Bauphysik, Technische Gebäudeausrüstung, Baulicher, Universität Kaiserslautern, Band 1 2000 (In German).Search in Google Scholar

Deutsches Institut für Normung e.V. DIN EN 253: Fernwärmerohre – Auslegung und Installation von gedämmten Einzel- und Doppelrohr-Verbundsystemen für direkt erdverlegte Heißwasser-Fernwärmenetze – Teil 2: Installation; Deutsche und Englische Fassung EN 13941-2:2019(DIN EN 253:2020-03). (District heating pipes – Design and installation of insulated single and double pipe composite systems for directly buried hot water district heating networks – Part 2: Installation). Berlin: Beuth, 2020 (In German).Search in Google Scholar

Bertermann D., Schwarz H. Laboratory device to analyse the impact of soil properties on electrical and thermal conductivity. International Agrophysics 2017:31(2):157–66. https://doi.org/10.1515/intag-2016-0048Search in Google Scholar

Deutsches Institut für Normung e.V. DIN EN 13941-1: Fernwärmerohre – Auslegung und Installation von gedämmten Einzel- und Doppelrohr-Verbundsystemen für direkt erdverlegte Heißwasser-Fernwärmenetze – Teil 1: Auslegung; Deutsche und Englische Fassung EN (DIN EN 13941-1: District heating pipes – Design and installation of insulated single and double pipe composite systems for directly buried hot water district heating networks – Part 1: Design). 13941-1:2019 (DIN EN 13941-1:2019). Berlin: Beuth, 2019 (In German).Search in Google Scholar

Deutsches Institut für Normung e.V. DIN 4124: Baugruben und Gräben – Böschungen, Verbau, Arbeitsraumbreiten (DIN 4124: Construction pits and trenches – embankments, shoring, working space widths). (DIN 4224:2012-01). Berlin: Beuth, 2012 (In German).Search in Google Scholar

Kvisgaard B., Hadvig S. Varmetab fra fjernvarmeledninger (Heat loss from pipelines in district heating systems). Teknisk forlag, 1980 (In German).Search in Google Scholar

Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Sciences de la vie, Sciences de la vie, autres