À propos de cet article

Citez

Argalis P. P., Sinka M., Andzs M., Korjakins A., Bajare D. Development of New Bio-Based Building Materials by Utilising Manufacturing Waste. Environmental and Climate Technologies 2024:28(1):58–70. https://doi.org/10.2478/rtuect-2024-0006 Search in Google Scholar

Lee H. S., Wang X. Y. Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation. Sustainability (Switzerland) 2016:8(4):312. https://doi.org/10.3390/su8040312 Search in Google Scholar

Celik K., Meral C., Petek Gursel A., Mehta P. K., Horvath A., Monteiro P. J. M. Mechanical Properties, Durability, and Life-cycle Assessment of Self-Consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites 2015:56:59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003 Search in Google Scholar

Duxson P., Fernández-Jiménez A., Provis J. L., Lukey G. C., Palomo A., Van Deventer J. S. J. Geopolymer Technology: The Current State of the Art. Journal of Materials Science 2007:42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z Search in Google Scholar

Duxson P., Provis J. L., Lukey G. C., van Deventer J. S. J. The Role of Inorganic Polymer Technology in The Development of ‘Green Concrete’. Cement and Concrete Research 2007:37(12):1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018 Search in Google Scholar

Das D., Laskar S. M., Hussain B. Study on Slag-Rice Husk Ash based Alkali Activated Concrete. ASPS Conference Proceedings 2022:1(1). https://doi.org/10.38208/acp.v1.487 Search in Google Scholar

Font A., Soriano L., de Moraes Pinheiro S. M., Tashima M. M., Monzó J., Borrachero M. V., Payá J. Design and Properties of 100% Waste-Based Ternary Alkali-Activated Mortars: Blast Furnace Slag, Olive-Stone Biomass Ash and Rice Husk Ash. Journal of Cleaner Production 2020:243:118568. https://doi.org/10.1016/j.jclepro.2019.118568 Search in Google Scholar

Sun R., Fang C., Zhang H., Ling Y., Feng J., Qi H., Ge Z. Chemo-Mechanical Properties of Alkali-Activated Slag/Fly Ash Paste Incorporating White Mud. Construction and Building Materials 2021:291:123312. https://doi.org/10.1016/j.conbuildmat.2021.123312 Search in Google Scholar

Zheng Y., Xuan D., Shen B., Ma K. Shrinkage Mitigation of Alkali-Activated Fly Ash/Slag Mortar by Using Phosphogypsum Waste. Construction and Building Materials 2023:375:130978. https://doi.org/10.1016/j.conbuildmat.2023.130978 Search in Google Scholar

Ansone-Bertina L., Arbidans L., Ozols V., Klavins M., Obuka V., Bisters V. Hydrothermal Carbonisation of Biomass Wastes as a Tool for Carbon Capture. Environmental and Climate Technologies 2022:26(1):415–427. https://doi.org/10.2478/rtuect-2022-0032 Search in Google Scholar

Siddique R. Utilization of Wood Ash in Concrete Manufacturing. Resources Conservation and Recycling 2012:67:27–33. https://doi.org/10.1016/j.resconrec.2012.07.004 Search in Google Scholar

Tripathi N., Hills C. D., Singh R. S., Atkinson C. J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. NPJ Climate Atmosphere Sc. 2019:2:35. https://doi.org/10.1038/s41612-019-0093-5 Search in Google Scholar

Scharff H. Landfill Reduction Experience in The Netherlands. Waste Management 2014:34(11):2218–2224. https://doi.org/10.1016/j.wasman.2014.05.019 Search in Google Scholar

Sigvardsen N. M., Kirkelund G. M., Jensen P. E., Geiker M. R., Ottosen L. M. Impact of Production Parameters on Physiochemical Characteristics of Wood Ash for Possible Utilisation in Cement-Based Materials. Resources Conservation Recycling 2019:145:230–240. https://doi.org/10.1016/j.resconrec.2019.02.034 Search in Google Scholar

Baričević A., Carević I., Bajto J. Š., Štirmer N., Bezinović M., Kristović K. Potential of Using Wood Biomass Ash in Low-Strength Composites. Materials 2021:14(5):1250. https://doi.org/10.3390/ma14051250 Search in Google Scholar

Zhu C., Pundienė I., Pranckevičienė J., Kligys M. Effects of Na2CO3/Na2SiO3 Ratio and Curing Temperature on the Structure Formation of Alkali-Activated High-Carbon Biomass Fly Ash Pastes. Materials 2022:15(23):8354. https://doi.org/10.3390/ma15238354 Search in Google Scholar

Gómez-Casero M. A., Pérez-Villarejo L., Castro E., Eliche-Quesada D. Effect of Steel Slag and Curing Temperature on the Improvement in Technological Properties of Biomass Bottom Ash Based Alkali-Activated Materials. Construction and Building Materials 2021:302:124205. https://doi.org/10.1016/j.conbuildmat.2021.124205 Search in Google Scholar

Cheah C. B., Ramli M. The Engineering Properties of High-Performance Concrete with HCWA-DSF Supplementary Binder. Construction and Building Materials 2013:40:93–103. https://doi.org/10.1016/j.conbuildmat.2012.10.010 Search in Google Scholar

Rajamma R., Labrincha J. A., Ferreira V. M. Alkali Activation of Biomass Fly Ash-Metakaolin Blends. Fuel 2012:98:265–271. https://doi.org/10.1016/j.fuel.2012.04.006 Search in Google Scholar

Abdulkareem O. A., Ramli M., Matthews J. C. Production of Geopolymer Mortar System Containing High Calcium Biomass Wood Ash as a Partial Substitution to Fly Ash: An Early Age Evaluation. Composites Part B: Engineering 2019:174:106941. https://doi.org/10.1016/j.compositesb.2019.106941 Search in Google Scholar

Jurado-Contreras S., Bonet-Martínez E., Sánchez-Soto P. J., Gencel O., Eliche-Quesada D. Synthesis and Characterization of Alkali-Activated Materials Containing Biomass Fly Ash and Metakaolin: Effect of the Soluble Salt Content of the Residue. Archives of Civil and Mechanical Engineering 2022:22:121. https://doi.org/10.1007/s43452-022-00444-2 Search in Google Scholar

Samsudin M. H., Ban C. C. Optimization on the Hybridization Ratio of Ground Granulated Blast Furnace Slag and High Calcium Wood Ash (GGBS – HCWA) for the Fabrication of Geopolymer Mortar. Advances in Environmental Biology 2015:9. Search in Google Scholar

Maschowski C., Kruspan P., Garra P., Arif A. T., Trouvé G., Gieré R. Physicochemical and Mineralogical Characterization of Biomass Ash from Different Power Plants in the Upper Rhine Region. Fuel 2019:258:116020. https://doi.org/10.1016/j.fuel.2019.116020 Search in Google Scholar

Saeli M., Senff L., Tobaldi D. M., Seabra M. P., Labrincha J. A. Novel Biomass Fly Ash-Based Geopolymeric Mortars Using Lime Slaker Grits as Aggregate for Applications in Construction: Influence of Granulometry and Binder/Aggregate Ratio. Construction and Building Materials 2019:227:116643. https://doi.org/10.1016/j.conbuildmat.2019.08.024 Search in Google Scholar

De Rossi A., Simão L., Ribeiro M. J., Hotza D., Moreira R. F. P. M. Study of Cure Conditions Effect on the Properties of Wood Biomass Fly Ash Geopolymers. Journal of Materials Research and Technology 2020:9(4):7518–7528. https://doi.org/10.1016/j.jmrt.2020.05.047 Search in Google Scholar

Agrela F., Beltran M. G., Cabrera M., López M., Rosales J., Ayuso J. Properties of Recycled Concrete Manufacturing with All-in Recycled Aggregates and Processed Biomass Bottom Ash. Waste Biomass Valorization 2018:9:1247–1259. https://doi.org/10.1007/s12649-017-9880-6 Search in Google Scholar

Rosales J., Beltrán M. G., Cabrera M., Velasco A., Agrela F. Feasible Use of Biomass Bottom Ash as Addition in the Manufacture of Lightweight Recycled Concrete. Waste Biomass Valorization 2016:7:953–963. https://doi.org/10.1007/s12649-016-9522-4 Search in Google Scholar

Beltrán M. G., Agrela F., Barbudo A., Ayuso J., Ramírez A. Mechanical and Durability Properties of Concretes Manufactured with Biomass Bottom Ash and Recycled Coarse Aggregates. Construction and Building Materials 2014:72:231–238. https://doi.org/10.1016/j.conbuildmat.2014.09.019 Search in Google Scholar

Ul Rehman M., Rashid K., Ul Haq E., Hussain M., Shehzad N. Physico-Mechanical Performance and Durability of Artificial Lightweight Aggregates Synthesized by Cementing and Geopolymerization. Construction and Building Materials 2020:232:117290. https://doi.org/10.1016/j.conbuildmat.2019.117290 Search in Google Scholar

Rashid K., Rehman M. U., de Brito J., Ghafoor H. Multi-Criteria Optimization of Recycled Aggregate Concrete Mixes. Journal of Cleaner Production 2020:276:124316. https://doi.org/10.1016/j.jclepro.2020.124316 Search in Google Scholar

Kulczycka J., Kowalski Z., Smol M., Wirth H. Evaluation of the Recovery of Rare Earth Elements (REE) from Phosphogypsum Waste – Case Study of the WIZÓW Chemical Plant (Poland). Journal of Cleaner Production 2016:113:345–354. https://doi.org/10.1016/j.jclepro.2015.11.039 Search in Google Scholar

Laurent A., Clavreul J., Bernstad A., Bakas I., Niero M., Gentil E., Christensen T. H., Hauschild M. Z. Review of LCA Studies of Solid Waste Management Systems - Part II: Methodological Guidance for a Better Practice. Waste Management 2014:34(3):589–606. https://doi.org/10.1016/j.wasman.2013.12.004 Search in Google Scholar

Teixeira E. R., Mateus R., Camões A., Branco F. G. Quality and Durability Properties and Life-Cycle Assessment of High Volume Biomass Fly Ash Mortar. Construction and Building Materials 2019:197:195–207. https://doi.org/10.1016/j.conbuildmat.2018.11.173 Search in Google Scholar

Teixeira E. R., Mateus R., Camões A. F., Bragança L., Branco F. G. Comparative Environmental Life-Cycle Analysis of Concretes Using Biomass and Coal Fly Ashes as Partial Cement Replacement Material. Journal of Clean Production 2016:112(P4):2221–2230. https://doi.org/10.1016/j.jclepro.2015.09.124 Search in Google Scholar

da Costa T. P., Quinteiro P., Tarelho L. A. C., Arroja L., Dias A. C. Environmental Assessment of Valorisation Alternatives for Woody Biomass Ash in Construction Materials. Resources Conservation and Recycling 2019:148:67–79. https://doi.org/10.1016/j.resconrec.2019.04.022 Search in Google Scholar

Gentil L. V., Vale A. T. Energy Balance and Efficiency in Wood Sawdust Briquettes Production. Floresta 2015:45. https://doi.org/10.5380/rf.v45i2.36954 Search in Google Scholar

Salas D. A., Ramirez A. D., Ulloa N., Baykara H., Boero A. J. Life Cycle Assessment of Geopolymer Concrete. Construction and Building Materials 2018:190:170–177. https://doi.org/10.1016/j.conbuildmat.2018.09.123 Search in Google Scholar

Wang P., Chen P., Ming Y., Li Q., Dong X. In-Depth Insight into the Effects of Steel Slag and Calcium Hydroxide on the Properties of a Fly Ash–Red Mud Geopolymer. Materials 2024:17(6):1249. https://doi.org/10.3390/ma17061249 Search in Google Scholar

Wang J., Lyu X. J., Wang L., Cao X., Liu Q., Zang H. Influence of the Combination of Calcium Oxide and Sodium Xarbonate on the Hydration Reactivity of Alkali-Activated Slag Binders. Journal of Cleaner Production 2018:171:622–629. https://doi.org/10.1016/j.jclepro.2017.10.077 Search in Google Scholar

Lu Y., Ge Y., Zhang G., Abdulwahab A., Salameh A.A., Ali H.E., Nguyen B. Le. Evaluation of Waste Management and Energy Saving for Sustainable Green Building through Analytic Hierarchy Process and Artificial Neural Network Model. Chemosphere 2023:318:137708. https://doi.org/10.1016/j.chemosphere.2022.137708 Search in Google Scholar

Bijeljić J., Ristić N., Grdić D., Pavlović M. Possibilities of Biomass Wood Ash Usage in Geopolymer Mixtures. Tehnicki Vjesnik 2023:30(1):52–60. https://doi.org/10.17559/TV-20220215222503 Search in Google Scholar

Kim E. H. Understanding Effects of Silicon/Aluminum Ratio and Calcium Hydroxide on Chemical Composition, Nanostructure and Compressive Strength for Metakaolin Geopolymers. Thesis. University of Illinois at Urbana-Champaign. 2012. [Online]. [Accessed: 11.02.2024]. Available: https://core.ac.uk/download/10200960.pdf Search in Google Scholar

Yang J., Tang Y., He X., Su Y., Zeng J., Ma M., Zeng L., Zhang S., Tan H., Strnadel B. An Efficient Approach for Sustainable Fly Ash Geopolymer by Coupled Activation of Wet-Milling Mechanical Force and Calcium Hydroxide. Journal Cleaner Production 2022:372:133771. https://doi.org/10.1016/j.jclepro.2022.133771 Search in Google Scholar

Hossain M. U., Poon C. S., Lo I. M. C., Cheng J. C. P. Comparative LCA on Using Waste Materials in the Cement Industry: A Hong Kong Case Study. Resources Conservation and Recycling 2017:120:199–208. https://doi.org/10.1016/j.resconrec.2016.12.012 Search in Google Scholar

Silvestro L., Scolaro T. P., Ruviaro A. S., dos Santos Lima G. T., Gleize P. J. P., Pelisser F. Use of Biomass Wood Ash to Produce Sustainable Geopolymeric Pastes. Construction and Building Materials 2023:370:130641. https://doi.org/10.1016/j.conbuildmat.2023.130641 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other