Accès libre

Research of Insertion Loss of Multilayered Construction with Devulcanized Waste Rubber

À propos de cet article

Citez

Shen W., et al. Investigation on polymer-rubber aggregate modified porous concrete. Constr. Build. Mater. 2013:38:667–674. https://doi.org/10.1016/j.conbuildmat.2012.09.006 Search in Google Scholar

Azevedo F., et al. Properties and durability of HPC with tyre rubber wastes. Constr. Build. Mater. 2012:34:186–191. https://doi.org/10.1016/j.conbuildmat.2012.02.062 Search in Google Scholar

Shu X., Huang B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014:37(B):217–224. https://doi.org/10.1016/j.conbuildmat.2013.11.027 Search in Google Scholar

Wang D. W., Ma L. Sound transmission through composite sandwich plate with pyramidal truss cores. Compos. Struct. 2017:164:104–117. https://doi.org/10.1016/j.compstruct.2016.11.088 Search in Google Scholar

Kovler K., Roussel N. Properties of fresh and hardened concrete. Cem. Concr. Res. 2011:41(7):775–792. https://doi.org/10.1016/j.cemconres.2011.03.009 Search in Google Scholar

Najim K. B., Hall M. R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 2012:27(1):521–530. https://doi.org/10.1016/j.conbuildmat.2011.07.013 Search in Google Scholar

Uygunoǧlu T., Topçu I. B. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Constr. Build. Mater. 2010:24(7):1141–1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027 Search in Google Scholar

Medina N. F., et al. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018:118:884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069 Search in Google Scholar

Ghowsi M. A., Jamshidi M. Recycling waste nitrile rubber (NBR) and improving mechanical properties of Revulcanized rubber by an efficient chemo-mechanical devulcanization. Adv. Ind. Eng. Polym. Res. 2023:6(3):255–264. https://doi.org/10.1016/j.aiepr.2023.01.004 Search in Google Scholar

Xu X., et al. Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. J. Clean. Prod. 2018:187:215–221. https://doi.org/10.1016/j.jclepro.2018.03.174 Search in Google Scholar

Lee J. H., et al. Insertion loss of sound waves through composite acoustic window materials. Curr. Appl. Phys. 2010:10(1):138–144. https://doi.org/10.1016/j.cap.2009.05.017 Search in Google Scholar

Kim H. S., et al. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method. Int. J. Nav. Archit. Ocean Eng. 2014:6(4):894–903. https://doi.org/10.2478/IJNAOE-2013-0220 Search in Google Scholar

Lyon R. H. Noise Reduction of Rectangular Enclosures with One Flexible Wall. J. Acoust. Soc. Am. 1963:35:1791–1797. https://doi.org/10.1121/1.1918822 Search in Google Scholar

Lee Y. Y., Ng C. F. Sound insertion loss of stiffened enclosure plates using the finite element method and the classical approach. J. Sound Vib. 1998:217(2):239–260. https://doi.org/10.1006/jsvi.1998.1748 Search in Google Scholar

Al-Bassyiouni M., Balachandran B. Sound transmission through a flexible panel into an enclosure: Structural-acoustics model. J. Sound Vib. 2005:284(1–2):467–486. https://doi.org/10.1016/j.jsv.2004.06.040 Search in Google Scholar

Kosała K., Majkut L., Olszewski R. Experimental study and prediction of insertion loss of acoustical enclosures. Vib. Phys. Syst. 2020:31(1):1–8. Search in Google Scholar

Ma X., et al. Mechanisms of active control of noise transmission through triple-panel system using single control force on the middle plate. Appl. Acoust. 2014:85:111–122. https://doi.org/10.1016/j.apacoust.2014.04.014 Search in Google Scholar

London A. Transmission of Reverberant Sound through Double Walls. J. Acoust. Soc. Am. 1950:22:270–279. https://doi.org/10.1121/1.1906601 Search in Google Scholar

Mulholland K. A., Parbrook H. D., Cummings A. The transmission loss of double panels. J. Sound Vib. 1967:6(3):324–334. https://doi.org/10.1016/0022-460X(67)90205-2 Search in Google Scholar

Heckl M. The Tenth Sir Richard Fairey Memorial Lecture: Sound transmission in buildings. J. Sound Vib. 1981:77(2):165–189. https://doi.org/10.1016/S0022-460X(81)80018-1 Search in Google Scholar

Fahy F. Foundations of Engineering Acoustics. Elsevier, 2003. Search in Google Scholar

Fahy F., Gardonio P. Sound and Structural Vibration—Radiation, Transmission and Response. Noise Control Eng. J. 2007:55(3):373–374. https://doi.org/10.3397/1.2741307 Search in Google Scholar

Kurra S., Arditi D. Determination of sound transmission loss of multilayered elements Part 1: Predicted and measured results. Act. Acust. Un. Acust. 2001:54(3):832–842. https://doi.org/10.1002/art.21672 Search in Google Scholar

Kang H.-J., et al. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy. J. Acoust. Soc. Am. 2000:107:1413–1420. https://doi.org/10.1121/1.428428 Search in Google Scholar

Cremer L., Heckl M., Petersson B. A. T. Structure-borne sound. Berlin: Springer, 2005. Search in Google Scholar

Brunskog J. The influence of finite cavities on the sound insulation of double-plate structures. J. Acoust. Soc. Am. 2005:117:3727–3739. https://doi.org/10.1121/1.1904264 Search in Google Scholar

Gu Q., Wang J. Effect of resilient connection on sound transmission loss of metal stud double panel partitions. Chinese J. Acoust. 1983. Search in Google Scholar

Poblet-Puig J., et al. The role of studs in the sound transmission of double walls. Act. Acust. Un. Acust. 2009:95(3):555–567. https://doi.org/10.3813/AAA.918176 Search in Google Scholar

Davy J. L. Predicting the Sound Insulation of Walls. Build. Acoust., 2009:16(1):1–20. https://doi.org/10.1260/135101009788066546 Search in Google Scholar

Davy J. L. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls. J. Acoust. Soc. Am. 2010:127:841–849. https://doi.org/10.1121/1.3273889 Search in Google Scholar

Vigran T. E. Sound insulation of double-leaf walls - Allowing for studs of finite stiffness in a transfer matrix scheme. Appl. Acoust. 2010:71(7):616–621. https://doi.org/10.1016/j.apacoust.2010.02.003 Search in Google Scholar

Van den Wyngaert J. C. E., Schevenels M., Reynders E. P. B. Predicting the sound insulation of finite double-leaf walls with a flexible frame. Appl. Acoust. 2018:141:93–105. https://doi.org/10.1016/j.apacoust.2018.06.020 Search in Google Scholar

Craik R. J. M., Smith R. S. Sound transmission through double leaf lightweight partitions. Part I: Airborne sound. Appl. Acoust. 2000:61(2):223–245. https://doi.org/10.1016/S0003-682X(99)00070-5 Search in Google Scholar

Hwang S., et al. Prediction of sound reduction index of double sandwich panel. Appl. Acoust. 2015:93:44–50. https://doi.org/10.1016/j.apacoust.2015.01.017 Search in Google Scholar

Long M. Sound Transmission Loss. Architectural Acoustics. 2nd Ed. Elsevier, 2014:345–382. [ Search in Google Scholar

Kosała K. Calculation models for analysing the sound insulating properties of homogeneous single baffles used in vibroacoustic protection. Appl. Acoust. 2019:146:108–117. https://doi.org/10.1016/j.apacoust.2018.11.012 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other