À propos de cet article

Citez

Ramage M. H., et al. The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews 2017:68:333–359. https://doi.org/10.1016/j.rser.2016.09.107 Search in Google Scholar

Vaidya A. A., Murton K. D., Smith D. A., Dedual G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conversion and Biorefinery 2022:12(11):5427–5442. https://doi.org/10.1007/s13399-022-02373-9 Search in Google Scholar

Álvarez C., Reyes-Sosa F. M., Díez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 2016:9(2):149–156. https://doi.org/10.1111/1751-7915.12346 Search in Google Scholar

Zhou Z., Lei F., Li P., Jiang J. Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 2018:115(11):2683–2702. https://doi.org/10.1002/bit.26788 Search in Google Scholar

Chutturi M., et al. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource. Science of The Total Environment 2023:864:161067. https://doi.org/10.1016/j.scitotenv.2022.161067 Search in Google Scholar

Faraca G., Boldrin A., Astrup T. Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling. Waste Management 2019:87:135–147. https://doi.org/10.1016/j.wasman.2019.02.005 Search in Google Scholar

Eurostat. Wood products – production and trade. [Online]. [Accessed: 17.02.2023]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Primary_wood_products Search in Google Scholar

Mantau U., et al. EUwood – Real potential for changes in growth and use of EU forests. Germany, 2010. [Online]. [Accessed: 17.02.2023]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1817ad12da993e9149593c7edfd5a912d7a213d7 Search in Google Scholar

Höglmeier K., Weber-Blaschke G., Richter K. Utilization of recovered wood in cascades versus utilization of primary wood – a comparison with life cycle assessment using system expansion. International Journal of Life Cycle Assessment 2014:19:1755–1766. https://doi.org/10.1007/s11367-014-0774-6 Search in Google Scholar

Eurostat. 2023. [Online]. [Accessed: 17.02.2023]. Available: https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes Search in Google Scholar

Besserer A., Troilo S., Girods P., Rogaume Y., Brosse N. Cascading Recycling of Wood Waste: A Review. Polymers 2021:13(11):1752. https://doi.org/10.3390/polym13111752 Search in Google Scholar

European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Reichenbach, J., Mantau, U., Vis, M. et al. CASCADES – Study on the optimised cascading use of wood, Mantau, U.(editor), Vis, M.(editor), Allen, B.(editor), Publications Office, 2016. https://data.europa.eu/doi/10.2873/827106 Search in Google Scholar

Ahmed A., Akhtar M., Myers G. C., Scott G. M. Kraft pulping of industrial wood waste. Presented at Pulping Conference, October 25–29, 1998, Montreal, Quebec, Canada. Atlanta, GA: TAPPI Press, 1998. Search in Google Scholar

Cheah C. B., Ramli M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour Conserv Recycl 2011:55(7):669–685. https://doi.org/10.1016/j.resconrec.2011.02.002 Search in Google Scholar

Mendieta C. M., Vallejos M. E., Felissia F. E., Chinga-Carrasco G., Area M. C. Review: Bio-polyethylene from Wood Wastes. J Polym Environ 2020:28(1):1–16. https://doi.org/10.1007/s10924-019-01582-0 Search in Google Scholar

Okuda N., Soneura M., Ninomiya K., Katakura Y., Shioya S. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 2008:106(2):128–133. https://doi.org/10.1263/jbb.106.128 Search in Google Scholar

Xing D., Magdouli S., Zhang J., Koubaa A. Microbial remediation for the removal of inorganic contaminants from treated wood: Recent trends and challenges. Chemosphere 2020:258:127429. https://doi.org/10.1016/j.chemosphere.2020.127429 Search in Google Scholar

Gschwend F. J. V., et al. Towards an environmentally and economically sustainable biorefinery: heavy metal contaminated waste wood as a low-cost feedstock in a low-cost ionic liquid process. Green Chemistry 2020:22(15):5032–5041. https://doi.org/10.1039/D0GC01241F Search in Google Scholar

Vamza I., Valters K., Luksta I., Resnais P., Blumberga D. Complete Circularity in Cross-Laminated Timber Production. Environmental and Climate Technologies 2021:25(1):1101–1113. https://doi.org/10.2478/rtuect-2021-0083 Search in Google Scholar

Akhtari S., Malladi K. T., Sowlati T., Mirza F. Incorporating risk in multi-criteria decision making: The case study of biofuel production from construction and demolition wood waste. Resour Conserv Recycl 2021:167:105233. https://doi.org/10.1016/j.resconrec.2020.105233 Search in Google Scholar

Edo M., Björn E., Persson P.-E., Jansson S. Assessment of chemical and material contamination in waste wood fuels – A case study ranging over nine years. Waste Management 2016:49:311–319. https://doi.org/10.1016/j.wasman.2015.11.048 Search in Google Scholar

Eurostat. Guidance on classification of waste according to EWC-Stat categories. Supplement to the Manual for the Implementation of the Regulation (EC) No 2150/2002 on Waste Statistics. Dec. 2010. Search in Google Scholar

AltholzV. Altholzverordnung vom 15. August 2002 (BGBl. I S. 3302), die zuletzt durch Artikel 120 der Verordnung vom 19. Juni 2020 (BGBl. I S. 1328) geändert worden ist, Aug. 15, 2002. (Waste Wood Ordinance of August 15, 2002 (BGBl. I p. 3302), which was last amended by Article 120 of the Ordinance of June 19, 2020). 2002. [Online]. [Accessed: 17.02.2023]. Available: https://www.gesetze-im-internet.de/altholzv/BJNR330210002.html Search in Google Scholar

BSI. PAS 111:2012 Specification for the requirements and test methods for processing waste wood. May 2012. Search in Google Scholar

Directive 2008/98/EC of the European Parliament and of the Council. of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union 2008: L 312/3. Search in Google Scholar

European commission. Commission regulation (EU) No 1357/2014 of 18 December 2014 replacing Annex III to Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives (EU) No 1357/2014. Official Journal of the European Union 2014: L 365/89 Search in Google Scholar

European Panel Federation. EPF Industry standard. The use of recycled wood for wood-based panels. Brussels, 2018. [Online]. [Accessed: 17.02.2023]. Available: https://europanels.org/wp-content/uploads/2018/11/EPF-Standard-for-panels-from-recycled-wood.pdf Search in Google Scholar

European Panel Federation. EPF Standard for delivery conditions of recycled wood. Brussels, 2018. [Online]. [Accessed: 17.02.2023]. Available: https://europanels.org/wp-content/uploads/2018/09/EPF-Standard-for-recycled-wood-use.pdf Search in Google Scholar

RecyclingholzV. Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für Recyclingholzverordnung, Fassung vom 07.09.2023, 2012. (Federal law consolidated: Entire legal provision for recycled wood regulations, version dated September 7, 2023, 2012). https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007830 Search in Google Scholar

BSI Standards Publication. BS EN ISO 17225 8:2023. Solid biofuels – Fuel specifications and classes. 2023. Search in Google Scholar

Sluiter J., Sluiter A. Summative Mass Closure Laboratory Analytical Procedure (LAP) Review and Integration. 2011. [Online]. [Accessed: 17.02.2023]. Available: https://www.nrel.gov/docs/gen/fy11/48087.pdf Search in Google Scholar

Munir T., Irle M., Belloncle C., Federighi M. Wood Based Bedding Material in Animal Production: A Minireview. Approaches in Poultry, Dairy & Veterinary Sciences 2019:6(4). https://doi.org/10.31031/APDV.2019.06.000644 Search in Google Scholar

Morel-Rouhier M. Chapter Four: Wood as a hostile habitat for ligninolytic fungi. Advances in Botanical Research 2021:99:115–149. https://doi.org/10.1016/bs.abr.2021.05.001 Search in Google Scholar

Aviat F., et al. Microbial Safety of Wood in Contact with Food: A Review. Compr Rev Food Sci Food Saf 2016:15(3):491–505. https://doi.org/10.1111/1541-4337.12199 Search in Google Scholar

Godden S., Bey R., Lorch K., Farnsworth R., Rapnicki P. Ability of Organic and Inorganic Bedding Materials to Promote Growth of Environmental Bacteria. J Dairy Sci 2008:91(1):151–159. https://doi.org/10.3168/jds.2007-0415 Search in Google Scholar

Marble S. C., Steed S. T., Saha D., Khamare Y. On-farm Evaluations of Wood-derived, Waste Paper, and Plastic Mulch Materials for Weed Control in Florida Container Nurseries. HortTechnology 2019:29(6):866–873. https://doi.org/10.21273/HORTTECH04437-19 Search in Google Scholar

Malinowski R., Meller E., Ochmian I., Malinowska K., Figiel-Kroczyńska M. Chemical Composition of Industrial Wood Waste and the Possibility of its Management. Civil and Environmental Engineering Reports 2022:32(4):167–183. https://doi.org/10.2478/ceer-2022-0051 Search in Google Scholar

Nilsson D., Bernesson S., Hansson P. A. Pellet production from agricultural raw materials – A systems study. Biomass Bioenergy 2011:35(1):679–689. https://doi.org/10.1016/j.biombioe.2010.10.016 Search in Google Scholar

Wang L., Skjevrak G., Hustad J. E., Grønli M. G. Effects of Sewage Sludge and Marble Sludge Addition on Slag Characteristics during Wood Waste Pellets Combustion . Energy & Fuels 2011:25(12):5775–5785. https://doi.org/10.1021/ef2007722 Search in Google Scholar

Azambuja R. da R., de Castro V. G., Trianoski R., Iwakiri S. Recycling wood waste from construction and demolition to produce particleboards. Maderas. Ciencia y tecnología, 2018:20(4). https://doi.org/10.4067/S0718-221X2018005041401 Search in Google Scholar

Vamza I., Diaz F., Resnais P., Radziņa A., Blumberga D. Life Cycle Assessment of Reprocessed Cross Laminated Timber in Latvia. Environmental and Climate Technologies 2021:25(1):58–70. https://doi.org/10.2478/rtuect-2021-0005 Search in Google Scholar

Viksne G., Vamža I., Terjanika V., Bezrucko T., Pubule J., Blumberga D. CO2 Storage in Logging Residue Products with Analysis of Energy Production Scenarios. Environmental and Climate Technologies 2022:26(1):1158–1168. https://doi.org/10.2478/rtuect-2022-0087 Search in Google Scholar

Sellers T. Growing markets for engineered products spurs research. Wood Technologies 2000:127(3):40–43. Search in Google Scholar

Araújo C. K. de C., Salvador R., Piekarski C. M., Sokulski C. C., de Francisco A. C., Camargo S. K. de C. A. Circular Economy Practices on Wood Panels: A Bibliographic Analysis. Sustainability 2019:11(4):1057. https://doi.org/10.3390/su11041057 Search in Google Scholar

Woods T. Fibre supply, sustainability and the packaging explosion: Market session: Focus on fibre for boxes and sustainable fibre supplies. Appita Magazine 2021:4:52–57. [Online]. [Accessed: 17.02.2023]. Available: https://search.informit.org/doi/10.3316/informit.320574602933649 Search in Google Scholar

Rautkoski H., et al. Recycling of Contaminated Construction and Demolition Wood Waste. Waste Biomass Valorization 2016:7(3):615–624. https://doi.org/10.1007/s12649-016-9481-9 Search in Google Scholar

Takkellapati S., Li T., Gonzalez M. A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 2018:20(7):1615–1630. https://doi.org/10.1007/s10098-018-1568-5 Search in Google Scholar

Grishkewich N., Mohammed N., Tang J., Tam K. C. Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 2017:29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005 Search in Google Scholar

Bajwa D. S., Pourhashem G., Ullah A. H., Bajwa S. G. A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod 2019:139:111526. https://doi.org/10.1016/j.indcrop.2019.111526 Search in Google Scholar

Yu O., Kim K. H. Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Applied Sciences 2020:10(13):4626. https://doi.org/10.3390/app10134626 Search in Google Scholar

Hu L., et al. Hemicellulose-Based Polymers Processing and Application. Am J Plant Sci 2020:11(12):2066–2079. https://doi.org/10.4236/ajps.2020.1112146 Search in Google Scholar

Ministero dell’Ambiente. Decreto 5 febbraio 1998. (Ministry of the Environment. Decree of 5 February 1998). 1998. Search in Google Scholar

Cesprini E., Resente G., Causin V., Urso T., Cavalli R., Zanetti M. Energy recovery of glued wood waste – A review. Fuel 2020:262:116520. https://doi.org/10.1016/j.fuel.2019.116520 Search in Google Scholar

Chang Y. C., Choi D. B., Kikuchi S. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus. Bioresour Technol 2012:103(1):477–480. https://doi.org/10.1016/j.biortech.2011.09.059 Search in Google Scholar

Tarasov D., Leitch M., Fatehi P. Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology for Biofuels 2018:11(1):1–28. https://doi.org/10.1186/s13068-018-1262-1 Search in Google Scholar

Pazzaglia A., Gelosia M., Giannoni T., Fabbrizi G., Nicolini A., Castellani B. Wood waste valorization: Ethanol based organosolv as a promising recycling process. Waste Management 2023:170:75–81. https://doi.org/10.1016/j.wasman.2023.08.003 Search in Google Scholar

TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed: 17.02.2023]. Available: https://phyllis.nl/ Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other