Accès libre

Mapping Climate Change Mitigation Strategies Adopted by Industries: An Overview from First Commitment of Kyoto Protocol (2009–2023)

À propos de cet article

Citez

UNFCCC. ICT Sector Helping to Tackle Climate Change. 2016. [Online]. [Accessed: 14.12.2022]. Available: https://www.unfccc.int/news/ict-sector-helping-to-tackle-climate-change Search in Google Scholar

Klenert D., Funke F., Mattauch L., O’Callaghan B. Five lessons from COVID-19 for advancing climate change mitigation. Environmental and Resource Economics 2020:76:751–778. https://doi.org/10.1007/s10640-020-00453-w Search in Google Scholar

Sharifi A., Simangan D., Kaneko S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustainability Science 2021:16(4):1079–1095. https://doi.org/10.1007/s11625-020-00853-3 Search in Google Scholar

Hossain M. U., Wang L., Chen L., Tsang D. C., Ng S. T., Poon C. S., Mechtcherine V. Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment International 2020:145:106139. https://doi.org/10.1016/j.envint.2020.106139 Search in Google Scholar

IEA. Industry Sector Lead, Energy Technology Policy Division OECD Steel Committee, 2021. Search in Google Scholar

Kumaran K. S., Amarnath D, J., Renita A., Stalin P. Energy efficient technologies and contribution of industries. Recent Advances in Space Technology Services and Climate Change 2010:231–234. https://doi.org/10.1109/RSTSCC.2010.5712841 Search in Google Scholar

Oshiro K., Fujimori S. Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals. Applied Energy 2022:313:118803. https://doi.org/10.1016/j.apenergy.2022.118803 Search in Google Scholar

Palea V., Santhià C. The financial impact of carbon risk and mitigation strategies: Insights from the automotive industry. Journal of Cleaner Production 2022:344:131001. https://doi.org/10.1016/j.jclepro.2022.131001 Search in Google Scholar

Emodi N. V., Chaiechi T., Beg A. R. A. Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model. Applied Energy 2019:236:1183–1217. https://doi.org/10.1016/j.apenergy.2018.12.045 Search in Google Scholar

Katsoulakos N. M., Misthos L. M., Doulos I. G., Kotsios V. S. Chapter 8 - Environment and Development. Basic Principles, Human Activities, and Environmental Implications. Environment and Development 2016:499–569. Elsevier. https://doi.org/10.1016/B978-0-444-62733-9.00008-3 Search in Google Scholar

Donthu N., Kumar S., Pattnaik D. Forty-five years of journal of business research: a bibliometric analysis. Journal of Business Research 2020:109:1–14. https://doi.org/10.1016/j.jbusres.2019.10.039 Search in Google Scholar

Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W. M. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research 2021:133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 Search in Google Scholar

Yuan B. Z., Sun J. Bibliometric analysis of research on the maize based on top papers during 2009–2019. COLLNET Journal of Scientometrics and Information Management 2020:14(1):75–92. https://doi.org/10.1080/09737766.2020.1787110 Search in Google Scholar

Niknejad N., Ismail W., Bahari M., Hendradi R., Salleh A. Z. Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environmental Technology & Innovation 2021:21:101272. https://doi.org/10.1016/j.eti.2020.101272 Search in Google Scholar

Pande M., Mulay P. Bibliometric survey of quantum machine learning. Science & Technology Libraries 2020:39(4):369–382. https://doi.org/10.1080/0194262X.2020.1776193 Search in Google Scholar

Sganzerla W. G., Ampese L. C., Mussatto S. I., Forster-Carneiro T. A bibliometric analysis on potential uses of brewer’s spent grains in a biorefinery for the circular economy transition of the beer industry. Biofuels, Bioproducts and Biorefining 2021:15(6):1965–1988. https://doi.org/10.1002/bbb.2290 Search in Google Scholar

Zhou X., Wei X., Lin J., Tian X., Lev B., Wang S. Supply chain management under carbon taxes: A review and bibliometric analysis. Omega 2021:98:102295. https://doi.org/10.1016/j.omega.2020.102295 Search in Google Scholar

Khan D., Arjmandi M. K., Yuvaraj M. Most Cited Works on Cloud Computing: The ‘Citation Classics’ as Viewed through Dimensions. ai. Science & Technology Libraries 2021:1–14. https://doi.org/10.1080/0194262X.2021.1951424 Search in Google Scholar

Shehata A., Eldakar M. An Exploration of Egyptian Facebook Users’ Perceptions and Behavior of COVID-19 Misinformation. Science & Technology Libraries 2021:40(4):390–415. https://doi.org/10.1080/0194262X.2021.1925203 Search in Google Scholar

Mohan B. S., Kumbar M. Scientometric analysis and visualization of solar physics research in India. Science & Technology Libraries 2020:39(2):189–209. https://doi.org/10.1080/0194262X.2020.1715321 Search in Google Scholar

Kang J. N., Wei Y. M., Liu, L. C., Han R., Yu B. Y., Wang J. W. Energy systems for climate change mitigation: A systematic review. Applied Energy 2020:263:114602. https://doi.org/10.1016/j.apenergy.2020.114602 Search in Google Scholar

Owusu P. A., Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016:3(1):1167990. https://doi.org/10.1080/23311916.2016.1167990 Search in Google Scholar

Muratori M., Calvin K., Wise M., Kyle P., Edmonds J. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environmental Research Letters 2016:11(9):095004. https://doi.org/10.1088/1748-9326/11/9/095004 Search in Google Scholar

Bose B. P., Moumita D., Ghosh D. Stockholm Conference to Kyoto Protocol – A Review of Climate Change Mitigation Initiatives. International Journal of Earth Sciences Knowledge and Applications 2022:4(2):338–350. Search in Google Scholar

van der Gaast W. Towards a future climate policy – from the Kyoto Protocol to the Paris Agreement. International Climate Negotiation Factors: Design, Process, Tactics 2017:91–123. https://doi.org/10.1007/978-3-319-46798-6_5 Search in Google Scholar

Haunschild R., Bornmann L., Marx W. Climate change research in view of bibliometrics. PloS one 2016:11(7):e0160393. https://doi.org/10.1371/journal.pone.0160393 Search in Google Scholar

Christensen L. D. A Bayesian game of resource exploitation in hinterland regions: modelling scenarios for sustainable development. Environment, Development and Sustainability 2023:25(1):277–296. https://doi.org/10.1007/s10668-021-02052-1 Search in Google Scholar

Jiang K., Ashworth P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective. Renewable and Sustainable Energy Reviews 2021:138:110521. https://doi.org/10.1016/j.rser.2020.110521 Search in Google Scholar

Strunge T., Naims H., Ostovari H., Olfe-Kräutlein B. Priorities for supporting emission reduction technologies in the cement sector – A multi-criteria decision analysis of CO2 mineralisation. Journal of Cleaner Production 2022:340:130712. https://doi.org/10.1016/j.jclepro.2022.130712 Search in Google Scholar

Ali S., Xu H., Yang K., Solangi Y. A. Environment management policy implementation for sustainable industrial production under power asymmetry in the graph model. Sustainable Production and Consumption 2022:29:636–648. https://doi.org/10.1016/j.spc.2021.11.012 Search in Google Scholar

Branco-Vieira M., Lopes M. P. C., Caetano N. Algae-based bioenergy production aligns with the Paris agreement goals as a carbon mitigation technology. Energy Reports 2022:8(S3):482–488. https://doi.org/10.1016/j.egyr.2022.01.081 Search in Google Scholar

Fennell P. S., Davis S. J., Mohammed A. Decarbonizing cement production. Joule 2022:5(6):1305–1311. https://doi.org/10.1016/j.joule.2021.04.011 Search in Google Scholar

Habert G., Roussel N. Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites 2009:31(6):397–402. https://doi.org/10.1016/j.cemconcomp.2009.04.001 Search in Google Scholar

Vázquez-Rowe I., Ziegler-Rodriguez K., Laso J., Quispe I., Aldaco R., Kahhat R. Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling 2019:142:283–292. https://doi.org/10.1016/j.resconrec.2018.12.017 Search in Google Scholar

Ottaviani Aalmo G., Gioli B., Rodriguez D. G. P., Tuomasjukka D., Liu H. Y., Pastore M. C., Salbitano F., Bogetoft P., Sæbø A., Konijnendijk C. Development of a novel framework for the assessment and improvement of climate adaptation and mitigation actions in Europe. Frontiers in Sustainable Cities 2022:44. https://doi.org/10.3389/frsc.2022.833098 Search in Google Scholar

Hu Z. Towards solar extractivism? A political ecology understanding of the solar energy and agriculture boom in rural China. Energy Research & Social Science 2023:98:102988. https://doi.org/10.1016/j.erss.2023.102988 Search in Google Scholar

Liyong X., Yurong Y., Hongliang Z., Liping G., Zequn J., Yang Y., Yutong He. Path analysis of agricultural and rural emission reduction technology under the background of “two-carbon” strategy. Chinese Journal of Ecological Agriculture (English and Chinese). 2022:30(4):527–534. Search in Google Scholar

Pratt C., Redding M., Hill J., Shilton A., Chung M., Guieysse B. Good science for improving policy: greenhouse gas emissions from agricultural manures. Animal Production Science 2014:55(6):691–701. https://doi.org/10.1071/AN13504 Search in Google Scholar

Sanz-Cobena A., Lassaletta L., Aguilera E., del Prado A., Garnier J., Billen G., Iglesias A., Sanchez B., Guardia G., Abalos D., Plaza-Bonilla D., Puigdueta-Bartolome I., Moral R., Galan E., Arriaga H., Merino P., Infante-Amate J., Meijide A., Pardo G., Alvaro-Fuentes J., Smith P. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems & Environment 2017:238:5–24. https://doi.org/10.1016/j.agee.2016.09.038 Search in Google Scholar

Buitenhuis A. J., Pearce J. M. Open-source development of solar photovoltaic technology. Energy for Sustainable Development 2012:16(3):379–388. https://doi.org/10.1016/j.esd.2012.06.006 Search in Google Scholar

Haddaway N. R., Cooke S. J., Lesser P., Macura B., Nilsson A. E., Taylor J. J., Raito K. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal regions: a systematic map protocol. Environmental Evidence 2019:8(1):1–11. https://doi.org/10.1186/s13750-018-0145-z Search in Google Scholar

Hodgkinson J. H., Smith M. H. Climate change and sustainability as drivers for the next mining and metals boom: The need for climate-smart mining and recycling. Resources Policy 2021:74:101205. https://doi.org/10.1016/j.resourpol.2018.05.016 Search in Google Scholar

Brunnhofer M., Gabriella N., Schöggl J. P., Stern T., Posch A. The biorefinery transition in the European pulp and paper industry–A three-phase Delphi study including a SWOT-AHP analysis. Forest Policy and Economics 2020:110:101882. https://doi.org/10.1016/j.forpol.2019.02.006 Search in Google Scholar

Panjaitan T. W. S., Dargusch P., Wadley D., Aziz A. A. A study of management decisions to adopt emission reduction measures in heavy industry in an emerging economy. Scientific Reports 2023:13(1):1413. https://doi.org/10.1038/s41598-023-28417-2 Search in Google Scholar

Burchart-Korol D., Pichlak M., Kruczek M. Innovative technologies for greenhouse gas emission reduction in steel production. Metalurgija 2016:55(1):119–122. Search in Google Scholar

Haszeldine R. S., Flude S., Johnson G., Scott V. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018:376(2119):20160447. https://doi.org/10.1098/rsta.2016.0447 Search in Google Scholar

Shatokha V. Environmental sustainability of the iron and steel industry: Towards reaching the climate goals. European Journal of Sustainable Development 2016:5(4):289–289. https://doi.org/10.14207/ejsd.2016.v5n4p289 Search in Google Scholar

Shatokha V., Matukhno E., Belokon K., Shmatkov G. Potential Means to Reduce CO2 Emissions of Iron and Steel Industry in Ukraine Using Best Available Technologies. Journal of Sustainable Metallurgy 2020:6(3):451–462. https://doi.org/10.1007/s40831-020-00289-0 Search in Google Scholar

Worrell E., Boyd G. Bottom-up estimates of deep decarbonization of US manufacturing in 2050. Journal of Cleaner Production 2022:330:129758. https://doi.org/10.1016/j.jclepro.2021.129758 Search in Google Scholar

Addison T., Roe A. Extractive industries: The management of resources as a driver of sustainable development. 2018. Oxford University Press. https://doi.org/10.1093/oso/9780198817369.001.0001 Search in Google Scholar

Zhang J., Liu L., Xie Y., Zhang Y., Guo H. An integrated optimization and multi-scale input–output model for interaction mechanism analysis of energy–economic–environmental policy in a typical fossil-energy-dependent region. Energy Strategy Reviews 2022:44:100947. https://doi.org/10.1016/j.esr.2022.100947 Search in Google Scholar

Wang Z., Zhang B. Low-Carbon Consumption in China: Residential Behavior, Corporate Practices and Policy Implication. Springer Nature. 2020. https://doi.org/10.1007/978-981-15-2792-0 Search in Google Scholar

Grodzińska-Jurczak M., Krawczyk A., Akhshik A., Dedyk Z., Strzelecka M. Contradictory or complementary? Stakeholders’ perceptions of a circular economy for single-use plastics. Waste Management 2022:142:1–8. https://doi.org/10.1016/j.wasman.2022.01.036 Search in Google Scholar

Lees J. C., Lees A. M., Gaughan J. B. The influence of shade availability on the effectiveness of the Dairy Heat Load Index (DHLI) to predict lactating cow behavior, physiology, and production traits. International Journal of Biometeorology 2022:66:289–299. https://doi.org/10.1007/s00484-021-02186-x Search in Google Scholar

Blackhurst M., Azevedo I. L., Matthews H. S., Hendrickson C. T. Designing building energy efficiency programs for greenhouse gas reductions. Energy Policy 2011:39(9):5269–5279. https://doi.org/10.1016/j.enpol.2011.05.037 Search in Google Scholar

Chaiyapa W., Esteban M., Kameyama Y. Sectoral approaches establishment for climate change mitigation in Thailand upstream oil and gas industry. Energy Policy 2016:94:204–213. https://doi.org/10.1016/j.enpol.2016.04.007 Search in Google Scholar

Ciotta M., Peyerl D., Zacharias L. G. L., Fontenelle A. L., Tassinari C., Moretto E. M. CO2 storage potential of offshore oil and gas fields in Brazil. International Journal of Greenhouse Gas Control 2021:112:103492. https://doi.org/10.1016/j.ijggc.2021.103492 Search in Google Scholar

Kessler J., Schillo B., Shelby M., Haspel A. Is natural gas really the answer?: Targeting natural gas in US climate change mitigation policy. Energy Policy 1994:22(7):623–628. https://doi.org/10.1016/0301-4215(94)90080-9 Search in Google Scholar

Konschnik K. E., Boling M. K. Shale gas development: a smart regulation framework. Environmental Science & Technology 2014:48(15):8404–8416. https://doi.org/10.1021/es405377u Search in Google Scholar

Morgunova M., Shaton K. The role of incumbents in energy transitions: Investigating the perceptions and strategies of the oil and gas industry. Energy Research & Social Science 2022:89:102573. https://doi.org/10.1016/j.erss.2022.102573 Search in Google Scholar

Yan Z., Cui C., Liao C. The Impact of Green Finance on Clean Power Generation: Evidence Based on China. Strategic Planning for Energy and the Environment 2021:40(4):421–436. https://doi.org/10.13052/spee1048-5236.4046 Search in Google Scholar

Zhang D., Zhang Z., Managi S. A bibliometric analysis on green finance: Current status, development, and future directions. Finance Research Letters 2019:29:425–430. https://doi.org/10.1016/j.frl.2019.02.003 Search in Google Scholar

Brown H. C. P. Climate change and Ontario forests: prospects for building institutional adaptive capacity. Mitigation and Adaptation Strategies for Global Change 2019:14:513–536. https://doi.org/10.1007/s11027-009-9183-8 Search in Google Scholar

Liu J., Wu F. Forest carbon sequestration subsidy and carbon tax as part of China’s forestry policies. Forests 2017:8(3):58. https://doi.org/10.3390/f8030058 Search in Google Scholar

Morzillo A.T., Colocousis C. R., Munroe D. K., Bell K. P., Martinuzzi S., Van Berkel D. B., Lechowicz M. J., Rayfield B., McGill B. ‘Communities in the middle’: Interactions between drivers of change and place-based characteristics in rural forest-based communities. Journal of Rural Studies, 2015:42:79–90. https://doi.org/10.1016/j.jrurstud.2015.09.007 Search in Google Scholar

Samariks V., Lazdiņš A., Bārdule A., Kalēja S., Butlers A., Spalva G., Jansons Ā. Impact of Former Peat Extraction Field Afforestation on Soil Greenhouse Gas Emissions in Hemiboreal Region. Forests 2023:14(2):184. https://doi.org/10.3390/f14020184 Search in Google Scholar

Xie S. H., Kurz W. A., McFarlane P. N. Inward-versus outward-focused bioeconomy strategies for British Columbia’s forest products industry: A harvested wood products carbon storage and emission perspective. Carbon Balance and Management 2021:16(1):1–22. https://doi.org/10.1186/s13021-021-00193-4 Search in Google Scholar

Zohrabian A., Sanders K. T. Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting. Applied Energy 2021:298:117194. https://doi.org/10.1016/j.apenergy.2021.117194 Search in Google Scholar

IEA. The Future of Hydrogen, IEA, Paris, 2019. [Online]. [Accessed: 15.12.2022]. Available: https://www.iea.org/reports/the-future-of-hydrogen Search in Google Scholar

Chaturvedi U., Sharma M., Dangayach G. S., Sarkar P. Evolution and adoption of sustainable practices in the pharmaceutical industry: An overview with an Indian perspective. Journal of Cleaner Production 2017:168:1358–1369. https://doi.org/10.1016/j.jclepro.2017.08.184 Search in Google Scholar

Solomon K. R., Velders G. J., Wilson S. R., Madronich S., Longstreth J., Aucamp P. J., Bornman J. F. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols. Journal of Toxicology and Environmental Health, Part B 2016:19(7):289–304. https://doi.org/10.1080/10937404.2016.1175981 Search in Google Scholar

Tomás R. A. F., Ribeiro F. R., Santos V. M. S., Gomes J. F. P., Bordado J. C. M. Assessment of the impact of the European CO2 emissions trading scheme on the Portuguese chemical industry. Energy Policy 2010:38(1):626–632. https://doi.org/10.1016/j.enpol.2009.06.066 Search in Google Scholar

Rashidi-Sabet S., Madhavaram S. A strategic marketing framework for emerging out of the climate change social trap: The case of the fashion industry. Journal of Macromarketing 2022:42(2):267–291. https://doi.org/10.1177/02761467211058083 Search in Google Scholar

Oluseyi P. O., Babatunde O. M., Babatunde O. A. Assessment of energy consumption and carbon footprint from the hotel sector within Lagos, Nigeria. Energy and Buildings 2016:118:106–113. https://doi.org/10.1016/j.enbuild.2016.02.046 Search in Google Scholar

Karlsson I., Rootzén J., Johnsson F. Reaching net-zero carbon emissions in construction supply chains–Analysis of a Swedish road construction project. Renewable and Sustainable Energy Reviews 2020:120:109651. https://doi.org/10.1016/j.rser.2019.109651 Search in Google Scholar

Hertwich E. G., Ali S., Ciacci L., Fishman T., Heeren N., Masanet E., Wolfram P. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics – a review. Environmental Research Letters 2019:14(4):043004. https://doi.org/10.1088/1748-9326/ab0fe3 Search in Google Scholar

Daka E. Adopting Clean Technologies to Climate Change Adaptation Strategies in Africa: a Systematic Literature Review. Environmental Management 2023:71(1):87–98. https://doi.org/10.1007/s00267-022-01704-w Search in Google Scholar

Dooley K. Routines, rigidity and real estate: Organisational innovations in the workplace. Sustainability 2017:9(6):998. https://doi.org/10.3390/su9060998 Search in Google Scholar

Brouhle K., Harrington D. R. Firm strategy and the Canadian voluntary climate challenge and registry (VCR). Business Strategy and the Environment 2009:18(6):360–379. https://doi.org/10.1002/bse.604 Search in Google Scholar

Hennenberg K. J., Dragisic C., Haye S., Hewson J., Semroc B., Savy C., Wiegmann K., Fehrenbach H., Fritsche U. R. The power of bioenergy-related standards to protect biodiversity. Conservation Biology 2010:24(2):412–423. https://doi.org/10.1111/j.1523-1739.2009.01380.x Search in Google Scholar

Odeku K., Meyer E. Climate change surge: Implementing stringent mitigation and adaptation strategies in South Africa. Journal of African Law 2010:54(2):159–183. https://doi.org/10.1017/S0021855310000033 Search in Google Scholar

Tyler E., du Toit M., Burchell Z. White certificates and white certificate trading schemes as greenhouse gas mitigation policy options for South Africa. Journal of Energy in Southern Africa 2011:22(1):18–25. https://doi.org/10.17159/2413-3051/2011/v22i1a3200 Search in Google Scholar

Franco A., Salza P. Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives. Renewable Energy 2011:36(2):743–753. https://doi.org/10.1016/j.renene.2010.07.022 Search in Google Scholar

Dodds R., Kelman I., Thiesen N., McDougall A., Garcia J., Bessada T. Industry perspectives on carbon-offset programs in Canada and the United States. Sustainability: Science, Practice and Policy 2012:8(2):31–41. https://doi.org/10.1080/15487733.2012.11908094 Search in Google Scholar

Buitenhuis A. J., Pearce J. M. Open-source development of solar photovoltaic technology. Energy for Sustainable Development 2012:16(3):379–388. https://doi.org/10.1016/j.esd.2012.06.006 Search in Google Scholar

Liu C. H., Lin S. J., Lewis C. Environmental impacts of electricity sector in Taiwan by using input-output life cycle assessment: The role of carbon dioxide emissions. Aerosol and Air Quality Research 2012:12(5):733–744. https://doi.org/10.4209/aaqr.2012.04.0090 Search in Google Scholar

Feldpausch-Parker A. M., O’Byrne M., Endres D., Peterson T. R. The Adventures of Carbon Bond: Using a melodramatic game to explain CCS as a mitigation strategy for climate change. Greenhouse Gases: Science and Technology 2013:3(1):21–29. https://doi.org/10.1002/ghg.1298 Search in Google Scholar

Pereira L. G. R. Evaluation methods and enteric methane mitigation strategies in ruminants. Revista Colombiana de Ciencias Pecuarias, 26(Suplemento). 2013:264–277. Search in Google Scholar

Singer A. M., Branham M., Hutchins M. G., Welker J., Woodard D. L., Badurek C. A., Ruseva T., Marland E., Marland G. The role of CO2 emissions from large point sources in emissions totals, responsibility, and policy. Environmental Science & Policy 2014:44:190–200. https://doi.org/10.1016/j.envsci.2014.08.001 Search in Google Scholar

Hammond G. P., Spargo J. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective. Energy Conversion and Management 2014:86:476–489. https://doi.org/10.1016/j.enconman.2014.05.030 Search in Google Scholar

He J. K. Objectives and strategies for energy revolution in the context of tackling climate change. Advances in Climate Change Research 2015:6(2):101–107. https://doi.org/10.1016/j.accre.2015.08.005 Search in Google Scholar

Sonter L. J., Barrett D. J., Moran C. J., Soares-Filho B. S. Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry. Nature Climate Change 2015:5(4):359–363. https://doi.org/10.1038/nclimate2515 Search in Google Scholar

Antimiani A., Costantini V., Kuik O., Paglialunga E. Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments. Ecological Economics 2016:128:246–259. https://doi.org/10.1016/j.ecolecon.2016.05.003 Search in Google Scholar

Sugiri A., Buchori I. Towards low emission development: Prospects of applying MBIs in the industrial sector of Central Java, Indonesia. Am. J. Environ. Sci 2016:12(3):225–236. https://doi.org/10.3844/ajessp.2016.225.236 Search in Google Scholar

Bilalis D., Roussis I., Fuentes F., Kakabouki I., Travlos I. Organic agriculture and innovative crops under Mediterranean conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2017:45(2):323–331. https://doi.org/10.15835/nbha45210867 Search in Google Scholar

Cullen B. R., MacLeod N. D., Scanlan J. C., Doran-Browne N. Influence of climate variability and stocking strategies on greenhouse gas emissions (GHGE), production and profit of a northern Queensland beef cattle herd. Animal Production Science 2016:58(6):990–997. https://doi.org/10.1071/AN15608 Search in Google Scholar

Tagomori I. S., Carvalho F. M., da Silva F. T., Merschmann P. R. D. C., Rochedo P. R., Szklo A., Schaeffer R. Designing an optimum carbon capture and transportation network by integrating ethanol distilleries with fossil-fuel processing plants in Brazil. International Journal of Greenhouse Gas Control 2018:68:112–127. https://doi.org/10.1016/j.ijggc.2017.10.013 Search in Google Scholar

Martinez S., Marchamalo M., Alvarez S. Organization environmental footprint applying a multi-regional input-output analysis: A case study of a wood parquet company in Spain. Science of the Total Environment 2018:618:7–14. https://doi.org/10.1016/j.scitotenv.2017.10.306 Search in Google Scholar

Vázquez-Rowe I., Ziegler-Rodriguez K., Laso J., Quispe I., Aldaco R., Kahhat R. Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resources, Conservation and Recycling 2019:142:283–292. https://doi.org/10.1016/j.resconrec.2018.12.017 Search in Google Scholar

Vilaboa-Arroniz J., Lopez-Collado J., Platas-Rosado D. E., Vilaboa-Arroniz I. The myth of biofuels in Mexico. Tropical and Subtropical Agroecosystems 2019:22(2). https://doi.org/10.56369/tsaes.2474 Search in Google Scholar

Cunha M., Richter C. Climate-induced cyclical properties of regional wine production using a time-frequency approach in Douro and Minho Wine Regions. Ciência e Técnica Vitivinícola 2022:35(1):16–29. https://doi.org/10.1051/ctv/20203501016 Search in Google Scholar

Panahi H. K. S., Dehhaghi M., Aghbashlo M., Karimi K., Tabatabaei M. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy 2020:145:699–710. https://doi.org/10.1016/j.renene.2019.06.081 Search in Google Scholar

Breyer C., Fasihi M., Aghahosseini A. Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy. Mitigation and Adaptation Strategies for Global Change 2020:25:43– 65. https://doi.org/10.1007/s11027-019-9847-y Search in Google Scholar

Kaltsatou A., Notley S. R., Flouris A. D., Kenny G. P. An exploratory survey of heat stress management programs in the electric power industry. Journal of Occupational and Environmental Hygiene 2021:18(9):436–445. https://doi.org/10.1080/15459624.2021.1954187 Search in Google Scholar

Ravikumar C., Ganapathy M., Karthikeyan A., Senthilvalavan P., Manivannan R. Integrated nutrient managementpromising way to reduce carbon dioxide and methane emission in flooded rice ecosystem: A review. Journal of Applied and Natural Science 2021:13(1):385–395. https://doi.org/10.31018/jans.v13i1.2570 Search in Google Scholar

Tcvetkov P. Climate policy imbalance in the energy sector: Time to focus on the value of CO2 utilization. Energies 2021:14(2):411. https://doi.org/10.3390/en14020411 Search in Google Scholar

Akel A. J. N., Hovstad J., Ruth M., Parmeggiani S., Patriarca R., Paltrinieri N. A Machine Learning Approach to Analyze Natural Hazards Accidents Scenarios. Chemical Engineering Transactions 2022:91:397–402. https://doi.org/10.3303/CET2291067 Search in Google Scholar

Hashim H., Zubir M. A., Kamyab H., Zahran M. F. I. Decarbonisation of the Industrial Sector Through Greenhouse Gas Mitigation, Offset, and Emission Trading Schemes. Chemical Engineering Transactions 2022:97:511–516. https://doi.org/10.3303/CET2297086 Search in Google Scholar

Janipour Z., de Gooyert V., Huijbregts M., de Coninck H. Industrial clustering as a barrier and an enabler for deep emission reduction: a case study of a Dutch chemical cluster. Climate Policy 2022:22(3):320–338. https://doi.org/10.1080/14693062.2022.2025755 Search in Google Scholar

Lee J., Kim S., You S., Park Y. K. Bioenergy generation from thermochemical conversion of lignocellulosic biomassbased integrated renewable energy systems. Renewable and Sustainable Energy Reviews 2023:178:113240. https://doi.org/10.1016/j.rser.2023.113240 Search in Google Scholar

Patel D., Shrivastava R., Tiwari R. P., Yadav R. K. Properties of cement mortar in substitution with waste fine glass powder and environmental impact study. Journal of Building Engineering 2020:27:100940. https://doi.org/10.1016/j.jobe.2019.100940 Search in Google Scholar

Majumder S., Neogi S., Dutta T., Powel M. A., Banik P. The impact of biochar on soil carbon sequestration: metaanalytical approach to evaluating environmental and economic advantages. Journal of Environmental Management 2019:250:109466. https://doi.org/10.1016/j.jenvman.2019.109466 Search in Google Scholar

Amundson R., Biardeau L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences 2018:115(46):11652–11656. https://doi.org/10.1073/pnas.1815901115 Search in Google Scholar

Leffel B. Climate consultants and complementarity: Local procurement, green industry and decarbonization in Australia, Singapore, and the United States. Energy Research & Social Science 2022:88:102635. https://doi.org/10.1016/j.erss.2022.102635 Search in Google Scholar

Zhao K., Huang G., Luo B., Wu Y. A factorial interval chance-constrained diet model for dairy farms under climate change: A case study for the Province of Saskatchewan, Canada. Journal of Cleaner Production 2022:360:132059. https://doi.org/10.1016/j.jclepro.2022.132059 Search in Google Scholar

Rashidi-Sabet S., Madhavaram S. A strategic marketing framework for emerging out of the climate change social trap: The case of the fashion industry. Journal of Macromarketing 2022:42(2):267–291. https://doi.org/10.1177/02761467211058083 Search in Google Scholar

Alleway H. K., Jones A. R., Theuerkauf S. J., Jones R. C. A global and regional view of the opportunity for climatesmart mariculture. Philosophical Transactions of the Royal Society B 2022:377(1854):20210128. https://doi.org/10.1098/rstb.2021.0128 Search in Google Scholar

Mahabir J., Bhagaloo K., Koylass N., Boodoo M. N., Ali R., Guo M., Ward K. What is required for resource-circular CO2 utilization within Mega-Methanol (MM) production? Journal of CO2 Utilization 2021:45:101451. https://doi.org/10.1016/j.jcou.2021.101451 Search in Google Scholar

Portugal-Pereira J., Koberle A., Lucena A. F., Rochedo P. R., Império M., Carsalade A. M., Schaeffer R., Rafaj P. Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil. Climatic Change 2018:148(1):293–309. https://doi.org/10.1007/s10584-018-2193-3 Search in Google Scholar

Banerjee S. B. Corporate environmental strategies and actions. Management Decision 2001:39(1):36–44. https://doi.org/10.1108/EUM0000000005405 Search in Google Scholar

Jha C. K., Gupta V., Chattopadhyay U., Sreeraman B. A. Migration as adaptation strategy to cope with climate change: A study of farmers’ migration in rural India. International Journal of Climate Change Strategies and Management 2018:10(1). https://doi.org/10.1108/IJCCSM-03-2017-0059 Search in Google Scholar

Mkonda M. Y. Awareness and adaptations to climate change among the rural farmers in different agro-ecological zones of Tanzania. Management of Environmental Quality 2022:33(6):1502–1527. https://doi.org/10.1108/MEQ-10-2021-0241 Search in Google Scholar

Oxford Analytica. Investment and policy key to meeting hydrogen goals. Expert Briefings 2022. https://doi.org/10.1108/OXAN-DB270889 Search in Google Scholar

Dwivedi Y. K., Hughes L., Kar A. K., Baabdullah A. M., Grover P., Abbas R., Andreini D., Abumoghli I., Barlette Y., Bunker D., Kruse L. C., Constantiou I., Davidon R. M., De R., Dubey R., Fenby-Taylor H., Gupta B., He W., Kodama M., Mantymaki M., Wade M. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. International Journal of Information Management 2022:63:102456. https://doi.org/10.1016/j.ijinfomgt.2021.102456 Search in Google Scholar

Rahman S. M., Kirshner J., Groh S., Rahman S. M. A Review of the Energy-employment Nexus in. Bangladesh: Rural-urban Electrification and Sectoral Occupation Patterns. Strategic Planning for Energy and the Environment 2022:317–344. https://doi.org/10.13052/spee1048-5236.4134 Search in Google Scholar

Mezzanotte V., Marazzi F., Ficara E., Mantovani M., Valsecchi S., Cappelli F. First Result son the Removal of Emerging Micropollutants from Municipal Centrate by Microalgae. Environmental and Climate Technologies 2022:26(1):36–45. https://doi.org/10.2478/rtuect-2022-0004 Search in Google Scholar

Alam S., Masukujjaman M., Lin C., Omar N., Na M., Othman A. Factors Affecting Photo Voltaic Solar Energy Usage Intention in Rural Households in Bangladesh: A Structural Equation Modelling Approach. Environmental and Climate Technologies 2022:26(1):276–293. https://doi.org/10.2478/rtuect-2022-0021 Search in Google Scholar

Terjanika V., Vetrinska L., Pubule J. CO2 as Resource. Society’s Willingness to Pay Analysis. Environmental and Climate Technologies 2022:26(1):806–821. https://doi.org/10.2478/rtuect-2022-0061 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other