À propos de cet article

Citez

Dutta A., Jinsart W. Gaseous and Particulate Matter Emissions from Road Transport: The Case of Kolkata, India. Environmental and Climate Technologies 2021:25(1):717–735. https://doi.org/10.2478/rtuect-2021-0054 Search in Google Scholar

Rogulski M., Badyda A., Firląg S. The Share of Pollution from Land Sources in PM Levels in the Region of Danish Straits, North and Baltic Seas. Environmental and Climate Technologies 2021:25(1):764–773. https://doi.org/10.2478/rtuect-2021-0057 Search in Google Scholar

Bozhko L., Starodubets N., Turgel I., Naizabekov A. GHG Emissions Assessment as Part of MSW Green Cluster Design: Case of Large Cities in Russia and Kazakhstan. Environmental and Climate Technologies 2021:25(1):1165–1178. https://doi.org/10.2478/rtuect-2021-0088 Search in Google Scholar

Serikbayeva A., Boranbayeva A., Abdibattayeva M., Nurbayeva F., Cherkeshova S., Myrzabekova A. Minimization of the Negative Environmental Impact of Oil Sludge by Using it in the Production of Bitumen. Environmental and Climate Technologies 2022:26(1):1337–1349. https://doi.org/10.2478/rtuect-2022-0101 Search in Google Scholar

Dolge K., Blumberga D. What are the Linkages between Climate and Economy? Bibliometric Analysis. Environmental and Climate Technologies 2022:26(1):616–629. https://doi.org/10.2478/rtuect-2022-0047 Search in Google Scholar

Sprudza K. L., Klavina A., Berzina B., Kauce R., Martinsone Z. Indoor Air Quality Guidelines Connection to IAQ Certification and Labelling Process. Environmental and Climate Technologies 2023:27(1):28–39. https://doi.org/10.2478/rtuect-2023-0003 Search in Google Scholar

Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093 Search in Google Scholar

Jankevičienė J., Kanapickas A. Impact of Climate Change on Wind Potential in Lithuania Territory. Environmental and Climate Technologies 2022:26(1):1–11. https://doi.org/10.2478/rtuect-2022-0001 Search in Google Scholar

Livzeniece L., Pubule J., Blumberga D. Sustainability Assessment of Wind Energy in Latvia: Sustainability SWOT and Multi-Criteria Analysis. Environmental and Climate Technologies 2021:25(1):1253–1269. https://doi.org/10.2478/rtuect-2021-0095 Search in Google Scholar

Puttock G. S., Colenbrander G. W., Blackmore D. R. Maplin Sands experiments 1980: Dispersion results from continuous releases of refrigerated liquid propane. S. Hartwig (ed), Heavy Gas and Risk Assessment 1980:11:147–161. https://doi.org/10.1007/978-94-009-7151-6_9 Search in Google Scholar

McQuaid J. Trials on dispersion of heavy gas clouds. Plant/Operations Progress 1985:4(1):58–61. https://doi.org/10.1002/prsb.720040112 Search in Google Scholar

Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019 Search in Google Scholar

Colenbrander G. W., Puttock J. S. Maplin Sands Experiments 1980: Interpretation and Modelling of Liquefied Gas Spills onto the Sea. Atmospheric Dispersion of Heavy Gases and Small Particles 1984:277–295. https://doi.org/10.1007/978-3-642-82289-6_22 Search in Google Scholar

Gotaas Y. Heavy gas dispersion and environmental conditions as revealed by the Thorney Island experiments Journal of Hazardous Materials 1985:11:399–408. https://doi.org/10.1016/0304-3894(85)85050-0 Search in Google Scholar

Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-y Search in Google Scholar

Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.043 Search in Google Scholar

Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. https://doi.org/10.1016/j.egypro.2018.07.036 Search in Google Scholar

Puttock J. S., McFarlane K., Prothero A., Rees F. J., Blewitt D. N. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. https://doi.org/10.1016/0950-4230(91)80003-D Search in Google Scholar

Folch A., Costa A., Hankin R. K. S. twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. https://doi.org/10.1016/j.cageo.2007.12.017 Search in Google Scholar

Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. https://doi.org/10.1016/j.atmosenv.2018.09.035 Search in Google Scholar

Burns D. S., Rottmann S. D., Plitz A. B. L., Wiseman F. L, Chynwat V. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. https://doi.org/10.1016/j.atmosenv.2012.03.067 Search in Google Scholar

Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. https://doi.org/10.2478/ijame-2019-0006 Search in Google Scholar

Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. https://doi.org/10.1016/j.ijheatfluidflow.2018.08.005 Search in Google Scholar

Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.043 Search in Google Scholar

Galeev A. D., Starovoitova, E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. https://doi.org/10.1007/s10891-013-0823-1 Search in Google Scholar

Snegirev A.Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. https://doi.org/10.1134/S0018151X11040201 Search in Google Scholar

Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. https://doi.org/10.2478/rtuect-2018-0007 Search in Google Scholar

Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009 Search in Google Scholar

RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances). Moscow, STC ‘Industrial safety’, 2008:27(6):122. (In Ukrainian). Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23:1–14. https://doi.org/10.2478/rtuect-2019-0075 Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430 Search in Google Scholar

Skob Y. A., Ugryumov M. L. Kompʺyuterna interaktyvna systema inzhenernoho analizu ta prohnozu ‘Toxic Spill Safety’ dlya otsinky bezpeky pid chas avariynoho prolyttya toksychnoho zridzhenoho hazu. (Computer Interactive System ‘Toxic Spill Safety’ of Engineering Analysis and Forecast for Safety Assessment of Accidental Spillage of Toxic Liquefied Gas). Official Bulletin of Copyrights 2017:45:212. Search in Google Scholar

Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792 Search in Google Scholar

Matsak V. G., Khotsianov L. K. Gigienicheskoe znachenie skorosti ispareniia i davleniia para toksicheskikh veshchestv primeniaemykh v proizvodstve [Hygienic value of evaporation rate and vapor pressure of toxic substances used in production]. Moscow: Medgiz, 1959. (in Russian) Search in Google Scholar

Knott G. D. Interpolating Cubic Splines. Boston: Birkhäuser Publ., 2000. https://doi.org/10.1007/978-1-4612-1320-8 Search in Google Scholar

Stepanenko S. N., Voloshin V. G., Kuryshina V. Yu. Raschet skorosti vetra v nizhnem 300-kh metrovom sloye atmosfery po dannym meteorologicheskikh nablyudeniy s uchetom temperaturnoy stratifikatsii i sherokhovatosti poverkhnosti. (Calculation of Wind Speed in the 300-Meter Lower Layer of the Atmosphere Based on the Meteorological Observations Taking Account of Temperature Stratification and Surface Roughness). Ukrainian Hydrometeorological Journal 2016:17:23–30. https://doi.org/10.31481/uhmj.17.2016.03 (In Ukrainian). Search in Google Scholar

Salamonowicz Z., Krauze A., Majder-Lopatka M., Dmochowska A., Piechota-Polanczyk A., Polanczyk A. Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes. Processes 2021:9(2):307. https://doi.org/10.3390/pr9020307 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other