Accès libre

A Review of Bio-Based Adhesives from Primary and Secondary Biomass for Wood Composite Applications

À propos de cet article

Citez

[1] De Almeida T. H., de Sousa A. M., Martins A. S. M., Christoforo A. L., de Almeida D. H., Lahr F. A. R. Effect of service temperature on shear strength of Pinus wood for roof structures. Acta Scientiarum. Technology 2018:40. https://doi.org/10.4025/actascitechnol.v40i1.3091310.4025/actascitechnol.v40i1.30913 Search in Google Scholar

[2] Ferreira A. M. et al. Biosourced binder for wood particleboards based on spent sulfite liquor and wheat flour. Polymers (Basel). 2018:10(10). https://doi.org/10.3390/polym1010107010.3390/polym10101070640394130960995 Search in Google Scholar

[3] Irle M., Thoemen H., Sernek M. Wood-based panel technology. An Introduction for Specialists. Brunel University Press, 2010. Search in Google Scholar

[4] Salem M. Z. M., Böhm M., Barcík Š., Beránková J. Emisija formaldehida iz drvnih ploča s različitim ljepilima na Bazi formaldehida. (Formaldehyde emission from wood panels with different formaldehyde-based adhesives). Drv. Ind. 2011:62(3):177–183. https://doi.org/10.5552/drind.2011.1102 (In Croatian).10.5552/drind.2011.1102 Search in Google Scholar

[5] Solt P. et al. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int. J. Adhes. Adhes. 2019:94:99–131. https://doi.org/10.1016/j.ijadhadh.2019.04.00710.1016/j.ijadhadh.2019.04.007 Search in Google Scholar

[6] Teixeira D. E., Pereira D. D. C., Nakamura A. P. D., Brum S. S. Adhesivity of bio-based anhydrous citric acid, tannin-citric acid and ricinoleic acid in the properties of formaldehyde-free medium density particleboard (MDP). Drv. Ind. 2020:71(3):235–242. https://doi.org/10.5552/drvind.2020.191710.5552/drvind.2020.1917 Search in Google Scholar

[7] Zheng P., Lin Q., Li F., Ou Y., Chen N. Development and characterization of a defatted soy flour-based bio-adhesive crosslinked by 1,2,3,4-butanetetracarboxylic acid. International Journal of Adhesion and Adhesives 2017:78:148–154. https://doi.org/10.1016/j.ijadhadh.2017.06.01610.1016/j.ijadhadh.2017.06.016 Search in Google Scholar

[8] Desai S. D., Patel J. V., Sinha V. K. Polyurethane adhesive system from biomaterial-based polyol for bonding wood. International Journal of Adhesion and Adhesives 2003:23(5):393–399. https://doi.org/10.1016/S0143-7496(03)00070-810.1016/S0143-7496(03)00070-8 Search in Google Scholar

[9] Drelich J. W. Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements. Adv. Colloid Interface Sci. 2019:267:1–14. https://doi.org/10.1016/j.cis.2019.02.00210.1016/j.cis.2019.02.00230861389 Search in Google Scholar

[10] Huang T. et al. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019:86:260–269. https://doi.org/10.1016/j.tifs.2019.02.04810.1016/j.tifs.2019.02.048 Search in Google Scholar

[11] Malysheva G. V., Bodrykh N. V. Hot melt adhesives. Polymer Science Series D 2011:4:301–303. https://doi.org/10.1134/S199542121104009510.1134/S1995421211040095 Search in Google Scholar

[12] Xu C. et al. Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 2019:390:124622. https://doi.org/10.1016/j.cej.2020.12462210.1016/j.cej.2020.124622 Search in Google Scholar

[13] Zhang Y. et al. Preparation and characterization of a soy protein-based high-performance adhesive with a hyperbranched cross-linked structure. Chem. Eng. J. 2018:354:1032–1041. https://doi.org/10.1016/j.cej.2018.08.07210.1016/j.cej.2018.08.072 Search in Google Scholar

[14] Tarling L. Global industry review. Surrey, 2015. Search in Google Scholar

[15] Koral J., Ullman R., Eirich F. R. The adsorption of polyvinyl acetate. J. Phys. Chem. 1958:62(5):541–550. https://doi.org/10.1021/j150563a00710.1021/j150563a007 Search in Google Scholar

[16] Yamaguchi M., Takatani R., Sato Y., Maeda S. Moisture-sensitive smart hot-melt adhesive from polyamide 6. SN Appl. Sci. 2020:2(9):1567. https://doi.org/10.1007/s42452-020-03400-y10.1007/s42452-020-03400-y Search in Google Scholar

[17] Bravo A., Hotchkiss J. H., Aeree T. E. Identification of Odor-Active Compounds Resulting from Thermal Oxidation of Polyethylene. J. Agric. Food Chem. 1992:40(10):1881–1885. https://doi.org/10.1021/jf00022a03110.1021/jf00022a031 Search in Google Scholar

[18] Pomposo J. A., Rodríguez J., Grande H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth. Met. 1999:104(2):107–111. https://doi.org/10.1016/S0379-6779(99)00061-210.1016/S0379-6779(99)00061-2 Search in Google Scholar

[19] Pilato L. Phenolic resins: A century of progress. 2010. https://doi.org/10.1007/978-3-642-04714-510.1007/978-3-642-04714-5 Search in Google Scholar

[20] Zhang C., Wu Y., Xu X. U., Li Y. A. N., Feng L. I., Wu G. Synthesis of Polyisobutylene with Arylamino Terminal Group by Combination of Cationic Polymerization with Alkylation. Journal of Polymer Science Part A: Polymer Chemistry 2008:46(3):936–946. https://doi.org/10.1002/pola.2243710.1002/pola.22437 Search in Google Scholar

[21] Capar Ö., Tabatabai M., Klee J. E., Worm M., Hartmann L., Ritter H. Fast curing of polyhydroxyurethanes: Via ring opening polyaddition of low viscosity cyclic carbonates and amines. Polym. Chem. 2020:11(43):6964–6970. https://doi.org/10.1039/D0PY01172J10.1039/D0PY01172J Search in Google Scholar

[22] Marques E. A. S., Magalhães D. N. M., Da Silva L. F. M. Experimental study of silicone-epoxy dual adhesive joints for high temperature aerospace applications. Materwiss. Werksttech. 2011:42(5):471–477. https://doi.org/10.1002/mawe.20110080910.1002/mawe.201100809 Search in Google Scholar

[23] Müller M., Chotěborský R. Impact strength behaviour of structural adhesives. Agron. Res. 2016:14:1078–1087. Search in Google Scholar

[24] Marasinghe L., Croutxé-Barghorn C., Allonas X., Criqui A. Effect of reactive monomers on polymer structure and abrasion resistance of UV cured thin films. Prog. Org. Coatings 2017:118:22–29. https://doi.org/10.1016/j.porgcoat.2017.09.02010.1016/j.porgcoat.2017.09.020 Search in Google Scholar

[25] Chen C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020:5(9):642–666. https://doi.org/10.1038/s41578-020-0195-z10.1038/s41578-020-0195-z Search in Google Scholar

[26] Yang Z., Zhang X., Liu X., Guan X., Zhang C., Niu Y. Flexible and stretchable polyurethane/waterglass grouting material. Constr. Build. Mater. 2017:138:240–246. https://doi.org/10.1016/j.conbuildmat.2017.01.11310.1016/j.conbuildmat.2017.01.113 Search in Google Scholar

[27] Corigliano P., Ragni M., Castagnetti D., Crupi V., Dragoni E., Guglielmino E. Measuring the static shear strength of anaerobic adhesives in finite thickness under high pressure. J. Adhes. 2019:97(8):783–800. https://doi.org/10.1080/00218464.2019.170427110.1080/00218464.2019.1704271 Search in Google Scholar

[28] Thuraisingam J., Gupta A., Subramaniam M. Natural Rubber Latex (NRL) and rice starch as an alternative binder in wood composite industry. Aust. J. Basic Appl. Sci. 2016:10(17):101–106. Search in Google Scholar

[29] Tester R. F., Karkalas J., Qi X. Starch structure and digestibility Enzyme-Substrate relationship. Worlds. Poult. Sci. J. 2004:60(2):186–195. https://doi.org/10.1079/WPS2004001410.1079/WPS20040014 Search in Google Scholar

[30] Suresh G., Sebastian J., Brar S. K. Waste as a Bioresource. In Waste Valorisation: Waste Streams in a Circular Economy, Lin, C., Kaur, G., Li, C., Yang, X. (eds). Wiley 2015:13–32. https://doi.org/10.1002/9781119502753.ch210.1002/9781119502753.ch2 Search in Google Scholar

[31] Patel A., Arora N., Sartaj K., Pruthi V., Pruthi P. A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew. Sustain. Energy Rev. 2016:62:836–855. https://doi.org/10.1016/j.rser.2016.05.01410.1016/j.rser.2016.05.014 Search in Google Scholar

[32] Roffael E., Behn C., Dix B. On the formaldehyde release of wood particles. Eur. J. Wood Wood Prod. 2012:70(6):911–912. https://doi.org/10.1007/s00107-012-0625-810.1007/s00107-012-0625-8 Search in Google Scholar

[33] Ponomarenko J., Lauberts M., Dizhbite T., Lauberte L., Jurkjane V., Telysheva G. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight. Holzforschung 2015:69(6):795–805. https://doi.org/10.1515/hf-2014-028010.1515/hf-2014-0280 Search in Google Scholar

[34] Çetin N. S., Özmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties. Int. J. Adhes. Adhes. 2002:22(6):481–486. https://doi.org/10.1016/S0143-7496(02)00059-310.1016/S0143-7496(02)00059-3 Search in Google Scholar

[35] Järvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT - Food Sci. Technol. 2011:44(6):1355–1361. https://doi.org/10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005 Search in Google Scholar

[36] Sawant O., Mahale S., Ramchandran V., Nagaraj G., Bankar A. Fungal Citric acid production using waste materials: A mini-review. J. Microbiol. Biotechnol. Food Sci. 2018:8(2):821–828. https://doi.org/10.15414/jmbfs.2018.8.2.821-82810.15414/jmbfs.2018.8.2.821-828 Search in Google Scholar

[37] Kleekayai T., Suntornsuk W. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 2011:27(5):1145–1154. https://doi.org/10.1007/s11274-010-0561-x10.1007/s11274-010-0561-x Search in Google Scholar

[38] Qu J., Zhao X., Liang Y., Zhang T., Ma P. X., Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018:183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.04410.1016/j.biomaterials.2018.08.04430172244 Search in Google Scholar

[39] Satpute S. K., Banat I. M., Dhakephalkar P. K., Banpurkar A. G., Chopade B. A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010:28(4):436–450. https://doi.org/10.1016/j.biotechadv.2010.02.00610.1016/j.biotechadv.2010.02.00620172021 Search in Google Scholar

[40] Agrawal A. A., Konno K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 2009:40:311–331. https://doi.org/10.1146/annurev.ecolsys.110308.12030710.1146/annurev.ecolsys.110308.120307 Search in Google Scholar

[41] Triveni Soubam and Arun Gupta. Eco-friendly natural rubber latex and modified starch-based adhesive for wood-based panels application. A review. Maejo Int. J. Energy Environ. Commun. 2021:3(1):49–53. https://doi.org/10.54279/mijeec.v3i1.24516310.54279/mijeec.v3i1.245163 Search in Google Scholar

[42] Epping J. et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat. Plants 2015:1:15048. https://doi.org/10.1038/nplants.2015.4810.1038/nplants.2015.48 Search in Google Scholar

[43] Alinejad M. et al. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers (Basel). 2019:11(7):1202. https://doi.org/10.3390/polym1107120210.3390/polym11071202668096131323816 Search in Google Scholar

[44] Isikgor F. H., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:25:4497–4559. https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263J Search in Google Scholar

[45] Pan X., Tian Y., Li J., Tan Q., Ren J. Bio-based polyurethane reactive hot-melt adhesives derived from isosorbide-based polyester polyols with different carbon chain lengths. Chem. Eng. Sci. 2022:264:118152. https://doi.org/10.1016/j.ces.2022.11815210.1016/j.ces.2022.118152 Search in Google Scholar

[46] Heinrich L. A. Future opportunities for bio-based adhesives-advantages beyond renewability. Green Chemistry 2019:8:1866–1888. https://doi.org/10.1039/C8GC03746A10.1039/C8GC03746A Search in Google Scholar

[47] Cui S., Luo X., Li Y. Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. Int. J. Adhes. Adhes. 2017:79:67–72. https://doi.org/10.1016/j.ijadhadh.2017.04.00810.1016/j.ijadhadh.2017.04.008 Search in Google Scholar

[48] Fahmy Y., El-Wakil N. A., El-Gendy A. A., Abou-Zeid R. E., Youssef M. A. Plant proteins as binders in cellulosic paper composites. Int. J. Biol. Macromol. 2010:47(1):82–85. https://doi.org/10.1016/j.ijbiomac.2010.03.01210.1016/j.ijbiomac.2010.03.01220361995 Search in Google Scholar

[49] Flambeau M., Redl A., Respondek F. Proteins From Wheat: Sustainable Production and New Developments in Nutrition-Based and Functional Applications. Sustainable Protein Sources 2016:67–78. https://doi.org/10.1016/B978-0-12-802778-3.00004-410.1016/B978-0-12-802778-3.00004-4 Search in Google Scholar

[50] Cheng H. N., He Z., Li C. H., Bland J. M., Bechtel P. J. Preparation and evaluation of catfish protein as a wood adhesive. Int. J. Polym. Anal. Charact. 2021:26(1):60–67. https://doi.org/10.1080/1023666X.2020.184436110.1080/1023666X.2020.1844361 Search in Google Scholar

[51] Yang I., Han G. S., Ahn S. H., Choi I. G., Kim Y. H., Oh S. C. Adhesive properties of medium-density fiberboards fabricated with rapeseed flour-based adhesive resins. J. Adhes. 2014:90(4):279–295. https://doi.org/10.1080/00218464.2013.79316110.1080/00218464.2013.793161 Search in Google Scholar

[52] Kokel A., Török B. Sustainable production of fine chemicals and materials using nontoxic renewable sources. Toxicol. Sci. 2018:161(2):214–224. https://doi.org/10.1093/toxsci/kfx21410.1093/toxsci/kfx21429045743 Search in Google Scholar

[53] Muizniece I., Blumberga D. Thermal Conductivity of Heat Insulation Material Made from Coniferous Needles with Potato Starch Binder. Energy Procedia 2016:95:324–329. https://doi.org/10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014 Search in Google Scholar

[54] Santos J., Delgado N., Fuentes J., Fuentealba C., Vega-Lara J., García D. E. Exterior grade plywood adhesives based on pine bark polyphenols and hexamine. Ind. Crops Prod. 2018:122:340–348. https://doi.org/10.1016/j.indcrop.2018.05.08210.1016/j.indcrop.2018.05.082 Search in Google Scholar

[55] Aristri M. A. Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests 2021:12(11):f12111516. https://doi.org/10.3390/f1211151610.3390/f12111516 Search in Google Scholar

[56] Norström E., Fogelström L., Nordqvist P., Khabbaz F., Malmström E. Xylan - A green binder for wood adhesives. Eur. Polym. J. 2015:67:483–493. https://doi.org/10.1016/j.eurpolymj.2015.02.02110.1016/j.eurpolymj.2015.02.021 Search in Google Scholar

[57] Sini N. K., Bijwe J., Varma I. K. Thermal behaviour of bis-benzoxazines derived from renewable feed stock ‘vanillin’. Polym. Degrad. Stab. 2014:109:270–277. https://doi.org/10.1016/j.polymdegradstab.2014.07.01510.1016/j.polymdegradstab.2014.07.015 Search in Google Scholar

[58] da Silva B. R. F. et al. Properties of cross-laminated timber bonded with an adhesive based on tannins from the bark of Mimosa tenuiflora Trees. Rev. Arvore 2022:46:1–10. https://doi.org/10.1590/1806-90882022000002010.1590/1806-908820220000020 Search in Google Scholar

[59] Zheng D., Wang X., Zhang M., Liu Z., Ju C. Anticorrosion and lubricating properties of a fully green lubricant. Tribol. Int. 2018:130:324–333. https://doi.org/10.1016/j.triboint.2018.08.01410.1016/j.triboint.2018.08.014 Search in Google Scholar

[60] Umemura K., Kawai S. Development of Wood-Based Materials Bonded with Citric Acid. For. Prod. J. 2015:65(1–2):38–42. https://doi.org/10.13073/FPJ-D-14-0003610.13073/FPJ-D-14-00036 Search in Google Scholar

[61] Gadhave R. V., Mahanwar P. A., Gadekar P. T. Starch stabilized polyvinyl acetate emulsion: Review. Polym. from Renew. Resour. 2018:9(2):75–84. https://doi.org/10.1177/20412479180090020310.1177/204124791800900203 Search in Google Scholar

[62] Samyn P. A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. International Journal of Biological Macromolecules 2021:178:71–93. https://doi.org/10.1016/j.ijbiomac.2021.02.09110.1016/j.ijbiomac.2021.02.09133609581 Search in Google Scholar

[63] Ferdosian F., Pan Z., Gao G., Zhao B. Bio-based adhesives and evaluation for wood composites application. Polymers 2017:9(2):polym9020070. https://doi.org/10.3390/polym902007010.3390/polym9020070643240530970748 Search in Google Scholar

[64] Monroy Y., Rivero S., García M. A. Sustainable panels design based on modified cassava starch bioadhesives and wood processing byproducts. Ind. Crops Prod. 2019:137:171–179. https://doi.org/10.1016/j.indcrop.2019.04.06210.1016/j.indcrop.2019.04.062 Search in Google Scholar

[65] Nordqvist P., Lawther M., Malmström E., Khabbaz F. Adhesive properties of wheat gluten after enzymatic hydrolysis or heat treatment. A comparative study. Ind. Crops Prod. 2012:38(1):139–145. https://doi.org/10.1016/j.indcrop.2012.01.02110.1016/j.indcrop.2012.01.021 Search in Google Scholar

[66] Wu T. Y., Mohammad A. W., Jahim J. M., Anuar N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 2010:91(7):1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.00810.1016/j.jenvman.2010.02.00820231054 Search in Google Scholar

[67] Ningsi D. W., Suhasman, Saad S. Characteristic of Chitosan Adhesive from Shell Shrimp Litopenaeus vannamei and Their Application for Producing Particleboard. in IOP Conference Series: Materials Science and Engineering 2019:593(1):012015. https://doi.org/10.1088/1757-899X/593/1/01201510.1088/1757-899X/593/1/012015 Search in Google Scholar

[68] Tokura S., Tamura H. Chitin and Chitosan. Compr. Glycosci. From Chem. to Syst. Biol. 2007:2–4:449–475. https://doi.org/10.1016/B978-044451967-2/00127-610.1016/B978-044451967-2/00127-6 Search in Google Scholar

[69] Hou L., Majumder E. L. W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials (Basel) 2021:14(3):ma14030503. https://doi.org/10.3390/ma1403050310.3390/ma14030503786451633494256 Search in Google Scholar

[70] Superti V., Forman T. V., Houmani C. Recycling thermal insulation materials: A case study on more circular management of expanded polystyrene and stonewool in switzerland and research agenda. Resources 2021:10(10):10100104. https://doi.org/10.3390/resources1010010410.3390/resources10100104 Search in Google Scholar

[71] United Soybean Board. NU Green soya® particleboard scores environmental certifications. 2016. [Online]. [Accessed: 15.11.2022]. Available: https://soynewuses.org/case-study/nu-green-soya-particleboard-scores-environmental-certifications/ Search in Google Scholar

[72] Solenis. SOYADTM Adhesive Technology. 2022. [Online]. [Accessed: 15.11.2022]. Available: https://www.solenis.com/en/research-and-development/innovations/soyad-adhesive-technology Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other