Accès libre

The Performance of Lightweight Concrete with Recycled Polyethylene Terephthalate and Polypropylene as Demising Wall

À propos de cet article

Citez

[1] Kamar K. A. M., Hamid Z. A. Sustainable construction and green building: The case of Malaysia. WIT Trans. Ecol. Environ. 2012:167:15–22. https://doi.org/10.2495/ST11002110.2495/ST110021 Search in Google Scholar

[2] Department of Statistics Malaysia. 2016 [Online]. [Accessed 14.08.2022]. Available: https://www.statistics.gov.my Search in Google Scholar

[3] Samaneh Z., et al. Environmental Impacts Assessment on Construction Sites. Construction Research Congress 2012. 2021:1750–1759. https://doi.org/doi:10.1061/9780784412329.17610.1061/9780784412329.176 Search in Google Scholar

[4] Kuppusamy S., et al. Implementation of green building materials in construction industry in Johor Bahru, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019:268(1):012006. https://doi.org/10.1088/1755-1315/268/1/01200610.1088/1755-1315/268/1/012006 Search in Google Scholar

[5] Sandanayake M., et al. Current sustainable trends of using waste materials in concrete—a decade review. Sustain. 2020:12(22):1–38. https://doi.org/10.3390/su1222962210.3390/su12229622 Search in Google Scholar

[6] Bejan G., et al. Lightweight concrete with waste – Review. Procedia Manuf. 2020:46:136–143. https://doi.org/10.1016/j.promfg.2020.03.02110.1016/j.promfg.2020.03.021 Search in Google Scholar

[7] GA Circular. Full Circle: Accelerating the Circular Economy for Post-Consumer PET Bottles in Southeast Asia. Singapore: GA Circular, 2019. Search in Google Scholar

[8] Iucolano F., et al. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Mater. Des. 2013:52:916–922. https://doi.org/10.1016/j.matdes.2013.06.02510.1016/j.matdes.2013.06.025 Search in Google Scholar

[9] Saikia N., De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014:52:236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.04910.1016/j.conbuildmat.2013.11.049 Search in Google Scholar

[10] Binici H., Aksogan O. Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips. J. Build. Eng. 2016:5:260–266. https://doi.org/10.1016/j.jobe.2016.01.00810.1016/j.jobe.2016.01.008 Search in Google Scholar

[11] Shanmugapriya M., Santhi M. H. Strength and Chloride Permeable Properties of Concrete with High Density Polyethylene Wastes. Int. J. Chem. Sci. 2017:15(1):10–17. Search in Google Scholar

[12] Li X., Ling T.-C., Hung Mo K. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Constr. Build. Mater. 2020:240:117869. https://doi.org/10.1016/j.conbuildmat.2019.11786910.1016/j.conbuildmat.2019.117869 Search in Google Scholar

[13] Kamaruddin M. A., et al. Potential use of Plastic Waste as Construction Materials : Recent Progress and Future Prospect. IOP Conf. Ser. Mater. Sci. Eng. 2017:267:1–10. https://doi.org/10.1088/1757-899X/267/1/01201110.1088/1757-899X/267/1/012011 Search in Google Scholar

[14] Záleská M., et al. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018:180:1–11. https://doi.org/10.1016/j.conbuildmat.2018.05.25010.1016/j.conbuildmat.2018.05.250 Search in Google Scholar

[15] Dixon D. E., et al. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). Farmington Hills: ACI, 1991. Search in Google Scholar

[16] BS 3148. Methods of Test for Water for Making Concrete (including notes on the suitability of the water). London: British Standards Institution, 1980. Search in Google Scholar

[17] Rahmani E., et al. On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 2013:47:1302–1308. https://doi.org/10.1016/j.conbuildmat.2013.06.04110.1016/j.conbuildmat.2013.06.041 Search in Google Scholar

[18] Osubor S. O., et al. Effect of Flaky Plastic Particle Size and Volume Used as Partial Replacement of Gravel on Compressive Strength and Density of Concrete Mix. J. Environ. Prot. 2019:10(6):711–721. https://doi.org/10.4236/jep.2019.10604210.4236/jep.2019.106042 Search in Google Scholar

[19] Lee Z. H., et al. Modification of Waste Aggregate PET for Improving the Concrete Properties. Adv. Civ. Eng. 2019:2019:6942052. https://doi.org/10.1155/2019/694205210.1155/2019/6942052 Search in Google Scholar

[20] Ahmed T., Daoud O. M. Influence of Polypropylene Fibres on Concrete Properties. IOSR J. Mech. Civ. Eng. 2016:13:9–20.10.9790/1684-1305060920 Search in Google Scholar

[21] Yap S. P., et al. Flexural toughness characteristics of steel-polypropylene hybrid fibre-reinforced oil palm shell concrete. Mater. Des. 2014:57:652–659. https://doi.org/10.1016/j.matdes.2014.01.00410.1016/j.matdes.2014.01.004 Search in Google Scholar

[22] BS EN 12350-2:2009. Testing fresh concrete - Slump test. London: British Standards Institution, 2009. Search in Google Scholar

[23] Hasan A., Maroof N., Ibrahim Y. Effects of Polypropylene Fiber Content on Strength and Workability Properties of Concrete. Polytech. J. 2019:9:7–12. https://doi.org/10.25156/ptj.v9n1y2019.pp7-1210.25156/ptj.v9n1y2019.pp7-12 Search in Google Scholar

[24] Ahmed T. W., Ali A. A. M., Zidan R. S. Properties of high strength polypropylene fiber concrete containing recycled aggregate. Constr. Build. Mater. 2020:241:118010. https://doi.org/10.1016/j.conbuildmat.2020.11801010.1016/j.conbuildmat.2020.118010 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other