À propos de cet article

Citez

[1] Morone P. Sustainability transition towards a bio-based economy. Sustainability 2018:10(8):2631. https://doi.org/10.3390/su1008263110.3390/su10082631 Search in Google Scholar

[2] Gravelsins A., et al. Economic analysis of wood products: System dynamics approach. Energy Procedia 2017:128:431–436. https://doi.org/10.1016/j.egypro.2017.09.02310.1016/j.egypro.2017.09.023 Search in Google Scholar

[3] Schultmann F., Rudi A. Quantitative assessment of regional biomass-based value chains [Online]. [Accessed 06.07.2021.] Available: https://biooekonomie-bw.uni-hohenheim.de/en/tp116 Search in Google Scholar

[4] UFZ Bioenergy Department. Assessment tools for sustainability monitoring of bioeconomy networks (sustainability monitoring tool SUMINISTRO). 2017 [Online]. [Accessed 02.04.2022]. Available: https://www.ufz.de/index.php?en=38506 Search in Google Scholar

[5] European Commission . EU Bioeconomy Monitoring System [Online]. [Accessed 02.04.2022]. Available: https://knowledge4policy.ec.europa.eu/bioeconomy/monitoring_en Search in Google Scholar

[6] European Commission. EU-Learning Project EU-Funding Opportunities 2021-2027 A practical Guide. Berlin: EUFRAK-EuroConsults Berlin GmbH (EUFRAK), 2021. Search in Google Scholar

[7] Investment and Development Agency of Latvia. Minister of Economics of Latvia: the new fast-track ‘Green Channel’ will significantly contribute to Latvia’s economic breakthrough. 2021 [Online]. [Accessed 02.04.2022]. Available: https://www.liaa.gov.lv/en/article/minister-economics-latvia-new-fast-track-green-channel-will-significantly-contribute-latvias-economic-breakthrough?utm_source=https%3A%2F%2Fwww.google.com%2F Search in Google Scholar

[8] Riga Technical University. Meža biomasa - jauni produkti un tehnoloģijas (Forest biomass - new products and technologies.). Riga: RTU, 2016. (in Latvian) Search in Google Scholar

[9] European Bioeconomy Library. Stakeholders engagement and co-creation [Online]. [Accessed 02.04.2022]. Available: https://www.bioeconomy-library.eu/category/stakeholders-engagement-and-co-creation/ Search in Google Scholar

[10] Cabinet of Ministers. Latvijas meža politika. 1998 [Online]. [Accessed 02.04.2022]. Available: https://www.zm.gov.lv/mezi/statiskas-lapas/nozares-strategijas-politikas-dokumenti/latvijas-mezapolitika?nid=328#jump (in Latvian) Search in Google Scholar

[11] Association ‘Zalas majas’. Forest sector in the 25 years of independence of Latvia. Riga: Zalas majas, 2016. Search in Google Scholar

[12] Auers D., Dombrovskis V. Latvia Competitiveness Report. Riga: Certus Think Tank, 2015. Search in Google Scholar

[13] Borkowski P., et al. The forest industry around the Baltic Sea region: Future challenges and opportunities. Turku: Centrum Balticum Foundation, 2020. Search in Google Scholar

[14] Taifouris M., Martín M. Added-value products. Sustainable Design for Renewable Processes. Elsevier, 2022:323–351.10.1016/B978-0-12-824324-4.00006-8 Search in Google Scholar

[15] Kamenders A., Vaica A. M. Investment and Policy Plan for the Latvian Wood Processing Industry. Riga: Riga Technical University, 2021. Search in Google Scholar

[16] O’Brien M., et al. Toward a systemic monitoring of the European bioeconomy: Gaps, needs and the integration of sustainability indicators and targets for global land use. Land Use Policy 2017:66:162–171. https://doi.org/10.1016/j.landusepol.2017.04.04710.1016/j.landusepol.2017.04.047 Search in Google Scholar

[17] Ministry of Agriculture Republic of Latvia. Latvijas Bioekonomikas stratēģija 2030 (Latvian Bioeconomy Strategy 2030.). Jelgava: LLU, 2017. (in Latvian) Search in Google Scholar

[18] Verkerk P. J., et al. Future transitions for the bioeconomy towards sustainable development and a climate-neutral economy: modelling needs to integrate all three aspects of sustainability. Luxembourg: Publications Office of the European Union, 2021. Search in Google Scholar

[19] Forest and wood products research and development institute. Koksnes biomasas izmantošana enerģijas ieguvē. Attīstības tendenču un iespēju novērtējums (Use of wood biomass in energy production. Assessment of development trends and opportunities.). Jelgava: Meka, 2011. (in Latvian) Search in Google Scholar

[20] Pyka A., et al. Modelling the bioeconomy: Emerging approaches to address policy needs. Journal of Cleaner Production 2022:330:129801. https://doi.org/10.1016/j.jclepro.2021.12980110.1016/j.jclepro.2021.129801 Search in Google Scholar

[21] Luhas J., et al. Pathways to a forest-based bioeconomy in 2060 within policy targets on climate change mitigation and biodiversity protection. Forest Policy and Economy 2021:131:102551. https://doi.org/10.1016/j.forpol.2021.10255110.1016/j.forpol.2021.102551 Search in Google Scholar

[22] Blumberga D., et al. Meža biomasa - jauni produkti un tehnoloģijas (Forest Biomass – new products and technologies.). Report. Riga: RTU, 2016. (in Latvian) Search in Google Scholar

[23] Hurmekoski E., et al. Impact of structural changes in wood-using industries on net carbon emissions in Finland. Journal of Industrial Ecology 2020:24(4):899–912. https://doi.org/10.1111/jiec.1298110.1111/jiec.12981 Search in Google Scholar

[24] European Commission. A new EU Forest Strategy: for forests and the forest-based sector. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. A new EU Forest Strategy: for forests and the forest-based sector. Brussels: EC, 2013. Search in Google Scholar

[25] Zihare L., Blumberga D. Bioeconomy investments: Market considerations. Environmental and Climate Technologies 2020:24(2):79–91. https://doi.org/10.2478/rtuect-2020-005610.2478/rtuect-2020-0056 Search in Google Scholar

[26] Rural Support Sevice Republic of Latvia. Valsts atbalsts meža nozares attīstībai (State support for the development of the forest sector) [Online]. [Accessed 07.03.2022]. Available: https://www.lad.gov.lv/lv/atbalsta-veidi/valstsatbalsts/valsts-atbalsta-veidi/mezsaimnieciba-169 (in Latvian) Search in Google Scholar

[27] Central Statistical Bureau of Republic of Latvia. Felling areas and stock volume [Online]. [Accessed 12.04.2022]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/8922-felling-areas-and-stock-volume Search in Google Scholar

[28] European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. New EU Forest Strategy for 2030. Brussels: EC, 2021. Search in Google Scholar

[29] Silava Institution, Latvia University of Agriculture. Latvian Forest Sector in Facts & Figures. Riga: Zalas majas, 2018. Search in Google Scholar

[30] Food and Agricultural Organization of the United Nations. Forestry Production and Trade [Online]. [Accessed 05.03.2022.]. Available: https://www.fao.org/forestry/statistics/84922/en/ Search in Google Scholar

[31] Haarich S., et al. Bioeconomy development in EU regions. Luxembourg: Publications Office of the European Union, 2017. Search in Google Scholar

[32] Bosman R., Rotmans J. Transition governance towards a bioeconomy: A comparison of Finland and The Netherlands. Sustainability (Switzerland) 2016:8(10):1017. https://doi.org/10.3390/su810101710.3390/su8101017 Search in Google Scholar

[33] Antikainen R., et al. Renewal of forest based manufacturing towards a sustainable circular bioeconomy. Helsinki: Finnish Environment Institute, 2017. Search in Google Scholar

[34] European Union. Opinion of the Committee of the Regions on ‘Innovating for sustainable growth: a bioeconomy for Europe. Official Journal of the European Union 2013:C17. Search in Google Scholar

[35] Carus M. The bioeconomy is much more than a circular economy. Blickwinkel 2017:22–29. Search in Google Scholar

[36] Lewandowski I. Bioeconomy. Shaping the Transition to a Sustainable, Biobased Economy. Springer Cham, 2018.10.1007/978-3-319-68152-8 Search in Google Scholar

[37] Mobtaker A., et al. A review on decision support systems for tactical logistics planning in the context of forest bioeconomy. Renewable and Sustainable Energy Reviews 2021:148:111250. https://doi.org/10.1016/j.rser.2021.11125010.1016/j.rser.2021.111250 Search in Google Scholar

[38] Central Statistical Bureau of Republic of Latvia. Heat energy balance by region 2009–2021 [Online]. [Accessed 03.04.2022]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__EN__ENB/ENB150/ Search in Google Scholar

[39] Wood L. Global Lyocell Fiber Market (2021 to 2029) - Increased Product Demand in the Apparel Manufacturing Industry is Driving Growth - ResearchAndMarkets.com. 2021 [Online]. [Accessed 17.03.2022]. Available: https://www.businesswire.com/news/home/20210709005355/en/Global-Lyocell-Fiber-Market-2021-to-2029---Increased-Product-Demand-in-the-Apparel-Manufacturing-Industry-is-Driving-Growth---ResearchAndMarkets.com Search in Google Scholar

[40] Vedernikovs N., et al. Obtaining of xylose by complex processing of birch wood. Riga: Latvian State Institute of Wood Chemistry, 2013. Search in Google Scholar

[41] Jiang X., et al. A review on raw materials, commercial production and properties of lyocell fiber. Journal of Bioresources and Bioproducts 2020:5(1):16–25. https://doi.org/10.1016/j.jobab.2020.03.00210.1016/j.jobab.2020.03.002 Search in Google Scholar

[42] Naidu D. S., Hlangothi S. P., John M. J. Bio-based products from xylan: A review. Carbohydrate Polymers 2018:179:28–41. https://doi.org/10.1016/j.carbpol.2017.09.06410.1016/j.carbpol.2017.09.06429111052 Search in Google Scholar

[43] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. https://doi.org/10.1016/j.egypro.2018.07.06510.1016/j.egypro.2018.07.065 Search in Google Scholar

[44] European Parliament and Council of the European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union 2022:L328/82. Search in Google Scholar

[45] Veipa A., Kirsanovs V., Barisa A. Techno-economic analysis of biofuel production plants producing biofuels using fisher tropsch synthesis. Environmental and Climate Technologies 2020:24(2):373–387. https://doi.org/10.2478/rtuect-2020-008010.2478/rtuect-2020-0080 Search in Google Scholar

[46] Hu J., Yu F., Lu Y. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion. Catalysts 2012:2(2):303–326. https://doi.org/10.3390/catal202030310.3390/catal2020303 Search in Google Scholar

[47] Tijmensen M. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 2002:23(2):129–152. https://doi.org/10.1016/S0961-9534(02)00037-510.1016/S0961-9534(02)00037-5 Search in Google Scholar

[48] Boyd S. P., Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press, 2004.10.1017/CBO9780511804441 Search in Google Scholar

[49] Stalidzans E., Dace E. Sustainable metabolic engineering for sustainability optimisation of industrial biotechnology. Computational and Structural Biotechnology Journal 2021:19:4770–4776. https://doi.org/10.1016/j.csbj.2021.08.03410.1016/j.csbj.2021.08.034841120134504669 Search in Google Scholar

[50] Klavins L., et al. Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. LWT 2018:93:583–591. https://doi.org/10.1016/j.lwt.2018.04.02110.1016/j.lwt.2018.04.021 Search in Google Scholar

[51] Markova D., et al. Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes. J Power Sources 2009:193(1):9–16. https://doi.org/10.1016/j.jpowsour.2009.01.09510.1016/j.jpowsour.2009.01.095 Search in Google Scholar

[52] Musonda F., Millinger M., Thrän D. Optimal biomass allocation to the German bioeconomy based on conflicting economic and environmental objectives. Journal of Cleaner Production 2021:309:127465. https://doi.org/10.1016/j.jclepro.2021.12746510.1016/j.jclepro.2021.127465 Search in Google Scholar

[53] Pyka A., et al. Modelling the bioeconomy: Emerging approaches to address policy needs. Journal of Cleaner Production 2022:330:129801. https://doi.org/10.1016/j.jclepro.2021.12980110.1016/j.jclepro.2021.129801 Search in Google Scholar

[54] Lauri P., et al. Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness. Forest Policy and Economics 2021:132:102588. https://doi.org/10.1016/j.forpol.2021.10258810.1016/j.forpol.2021.102588 Search in Google Scholar

[55] Zihare L., et al. Bioresource Value Model. Case of Fisheries. Environmental and Climate Technologies 2021:25(1):1179–1192. https://doi.org/10.2478/rtuect-2021-008910.2478/rtuect-2021-0089 Search in Google Scholar

[56] Allena-Ozolina S., et al. Integrated MARKAL-EFOM System (TIMES) Model for Energy Sector Modelling. Proceedings of the 2020 IEEE 61st Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2020. https://doi.org/10.1109/RTUCON51174.2020.931662310.1109/RTUCON51174.2020.9316623 Search in Google Scholar

[57] Krzemień J. Application of Markal Model Generator in Optimizing Energy Systems. Journal of Sustainable Mining 2013:12(2):35–39. https://doi.org/10.7424/jsm13020510.7424/jsm130205 Search in Google Scholar

[58] Seebregtsl A. J., Goldstein G. A., Smekens K. Energy / Environmental Modeling with the MARKAL Family of Models. Operations Research Proceedings 2001:75–82. https://doi.org/10.1007/978-3-642-50282-8_1010.1007/978-3-642-50282-8_10 Search in Google Scholar

[59] Loulou R., et al. Energy Technology Systems Analysis Programme: TIMES Damage Functions. 2005. Search in Google Scholar

[60] Perissi I., et al. Cross-validation of the MEDEAS energy-economy- environment model with the integrated MARKALEFOM system (TIMES) and the long-range energy alternatives planning system (LEAP). Sustainability (Switzerland) 2021:13(4):1967. https://doi.org/10.3390/su1304196710.3390/su13041967 Search in Google Scholar

[61] Jaunzems D., et al. Adaptation of TIMES model structure to industrial, commercial and residential sectors. Environmental and Climate Technologies 2020:24(1):392–405. https://doi.org/10.2478/rtuect-2020-002310.2478/rtuect-2020-0023 Search in Google Scholar

[62] Balula L., Bina O. Summary -Literature Review of Key References for Scenario Building. URBACHINA Project. Lisbon: Institute of Social Sciences, University of Lisbon, 2013. Search in Google Scholar

[63] Brandes O. M., Brooks D. B. The Soft Path for Water in a Nutshell. Victoria: UVicScience, 2005. Search in Google Scholar

[64] Lenzing Group. Up for future generations Highlights 2020. Lenzig: Lenzig Group, 2020. Search in Google Scholar

[65] Gram M. A Systematic Methodology to Reduce Losses in Production with the Balanced Scorecard Approach. Manufacturing Science and Technology 2013:1(1):12–22. https://doi.org/10.13189/mst.2013.01010310.13189/mst.2013.010103 Search in Google Scholar

[66] European Commission. Data portal of agro-economics Modelling [Online]. [Accessed 07.03.2022.]. Available: https://datam.jrc.ec.europa.eu/datam/area/BIOECONOMY Search in Google Scholar

[67] Eurostat. Forestry. Area of wooden land [Online]. [Accessed 07.03.2022.]. Available: https://ec.europa.eu/eurostat/web/forestry/data/database Search in Google Scholar

[68] Central Statistical Bureau of Republic of Latvia. Forestry [Online]. [Accessed 07.03.2022.]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/forestry Search in Google Scholar

[69] Ministry of Agriculture Republic of Latvia. Foreign trade [Online]. [Accessed 09.03.2022]. Available: https://www.zm.gov.lv/en/mezi/statiskas-lapas/foreign-trade?id=5430#jump Search in Google Scholar

[70] State Forest Service. Ciršanas apliecinājumu izsniegšana (Issuance of felling certificates) [Online]. [Accessed 04.04.2022.]. Available: https://www.zm.gov.lv/valsts-meza-dienests/statiskas-lapas/cirsanas-apliecinajumuizsniegsana?id=2558#jump (in Latvian) Search in Google Scholar

[71] Central Statistical Bureau of Republic of Latvia. Average logging costs [Online]. [Accessed 22.02.2022.]. Available: https://stat.gov.lv/en/metadata/8144-average-logging-costs Search in Google Scholar

[72] Ministry of Agriculture Republic of Latvia. Amount of harvested wood 2005.-2020. [Online]. [Accessed 22.02.2022.]. Available: https://www.vmd.gov.lv/valsts-meza-dienests/statiskas-lapas/-meza-apsaimniekosana-/koksnes-resursuieguve?nid=1682 Search in Google Scholar

[73] Latvian Timber producers and exporters association [Online]. [Accessed 07.04.2022.]. Available: http://www.latviantimber.lv/ Search in Google Scholar

[74] State Environmental Service. A un B atļaujas piesārņojošo darbību veikšanai (A and B permits for polluting activities) [Online]. [Accessed 07.03.2022.]. Available: https://registri.vvd.gov.lv/izsniegtas-atlaujas-un-licences/a-un-batlaujas/ (in Latvian) Search in Google Scholar

[75] State Environmental Service. Atļauju un licenču meklētājs (Permits and licenses finder) [Online]. [Accessed 07.11.2021]. Available: https://registri.vvd.gov.lv/izsniegtas-atlaujas-un-licences/atlauju-un-licencu-mekletajs/ (in Latvian) Search in Google Scholar

[76] Central Statistical Bureau of Republic of Latvia. External trade of goods (import, export) [Online]. [Accessed 07.11.2021.]. Available: https://stat.gov.lv/en/statistics-themes/trade-and-services/foreign-trade-goods Search in Google Scholar

[77] State Environmental Service. Atļauja B kategorijas piesārņojošai darbībai SIA ‘Granul Pellets’ (Permit for category B polluting activity of SIA ‘Graanul Pellets’.). Riga: SES, 2010. (in Latvian) Search in Google Scholar

[78] Profit or loss account. Section ‘Production cost price of produce sold, purchase costs for goods sold or services provided’ [Online]. [Accessed 09.04.2022]. Available: https://www.lursoft.lv/ Search in Google Scholar

[79] Central Statistical Bureau of Republic of Latvia. UFR010. Companies’ main business indicators 2005-2020 [Online]. [Accessed 07.11.2021.]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__ENT__UF__UFR/UFR010 Search in Google Scholar

[80] State Environmental Service. Atļauja B kategorijas piesāņojošai darbībai CEWOOD SIA Nr. MA17IB0001 (Permit for B category polluting activity CEWOOD SIA No. MA17IB0001.). Madona: SES, 2010. (in Latvian) Search in Google Scholar

[81] State Environmental Service. Atļauja B kategorijas piesārņojošai darbībai BBFC Ltd. Nr. VA11IB0031 (Category B polluting activity permit BBFC Ltd. No. VA11IB0031.). Madona: SES, 2004. (in Latvian) Search in Google Scholar

[82] Panthapulakkal F. S. Microwave Assisted Extraction of Xylan. Toronto: University of Toronto, 2014. Search in Google Scholar

[83] Cotana F., et al. Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia 2014:45:42–51. https://doi.org/10.1016/j.egypro.2014.01.00610.1016/j.egypro.2014.01.006 Search in Google Scholar

[84] European Commission. EU Reference Scenario. [Online]. [Accessed 06.08.2021]. Available: https://ec.europa.eu/energy/data-analysis/energy-modelling/eu-reference-scenario-2020_en Search in Google Scholar

[85] Central Statistical Bureau of Republic of Latvia. Planned felling volume indicated in tree felling licence by type of fellingQ1 2014 - Q3 2021 [Online]. [Accessed 05.04.2022.]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/forestry/tables/mez020c-planned-felling-volume-indicated-tree Search in Google Scholar

[86] Blumberga A., et al. Sistēmdinamika biotehonomikas modelēšanai (System dynamics for modeling biotechonomics.). Riga: Riga Technical University, 2016. (in Latvian)10.7250/9789934108013 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other