À propos de cet article

Citez

[1] Zu L. Sustainable Production and Consumption. Encycl. Corp. Soc. Responsib. 2013:2474–2482. https://doi.org/10.1007/978-3-642-28036-8_25810.1007/978-3-642-28036-8_258 Search in Google Scholar

[2] McCormick K., Kautto N. The Bioeconomy in Europe: An Overview. Sustain. 2013:5(6):2589–2608. https://doi.org/10.3390/su506258910.3390/su5062589 Search in Google Scholar

[3] Commission E. Review of the 2012 European Bioeconomy Strategy. Luxembourg: Publication Office, 2017. Search in Google Scholar

[4] Blumberga A., et al. System dynamics model of a biotechonomy. J. Clean. Prod. 2018:172:4018–4032. https://doi.org/10.1016/j.jclepro.2017.03.13210.1016/j.jclepro.2017.03.132 Search in Google Scholar

[5] Ministry of Agriculture. Latvian Bioeconomy Strategy 2030. Riga: MoA, 2019. Search in Google Scholar

[6] Translation Latvian Bioeconomy Strategy 2030. 2018. Search in Google Scholar

[7] Zdanovskis K., Pilvere I. Agricultural Development in Latvia After Joining the European Union. Research for Rural Development 2015(2):161–168. Search in Google Scholar

[8] Joint Working Party on Agriculture and the Environment. Bio-Economy and the Sustainability of the Agriculture and Food System: Opportunities and Policy Challenges. Paris: OECD, 2019. Search in Google Scholar

[9] Autoridad Nacional del Servicio Civil. Angewandte Chemie International Edition 2021:6(11):951–952. Search in Google Scholar

[10] Britannica. Latvia – Economy [Online]. [Accessed 29.03.2022]. Available: https://www.britannica.com/place/Latvia/Economy Search in Google Scholar

[11] Ministry of Agriculture. Agriculture is one the most ancient sectors of the national economy [Online]. [Accessed 21.02.2022]. Available: https://www.zm.gov.lv/en/lauksaimnieciba/jaunumi/agriculture-is-one-the-most-ancientsectors-of-the-national-economy?id=4096 Search in Google Scholar

[12] Buseva T. The vulnerability of Latvia’s agriculture: Farm level response to climatic and non-climatic stimuli. Linköping: Linköping University, 2011. Search in Google Scholar

[13] Vitola I., et al. Economic Analysis and Development Prospects of the Crop Farming Sector in Latvia. Economic Science for Rural Development 2013:30:43–49. Search in Google Scholar

[14] Ministry of Agriculture. Plant production [Online]. [Accessed 07.03.2022]. Available: https://www.zm.gov.lv/en/lauksaimnieciba/statiskas-lapas/plant-production?nid=1181#jump Search in Google Scholar

[15] Kragt M. E., et al. Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems. Agric. Syst. 2016:143:217–224. https://doi.org/10.1016/J.AGSY.2015.12.02010.1016/j.agsy.2015.12.020 Search in Google Scholar

[16] Janssen S., et al. A generic bio-economic farm model for environmental and economic assessment of agricultural systems. Environ. Manag. 2010:46(6):862–877. https://doi.org/10.1007/S00267-010-9588-X/TABLES/410.1007/s00267-010-9588-x Search in Google Scholar

[17] Zanghelini G. M., Cherubini E., Soares S. R. How Multi-Criteria Decision Analysis (MCDA) is aiding Life Cycle Assessment (LCA) in results interpretation. J. Clean. Prod. 2018:172:609–622. https://doi.org/10.1016/J.JCLEPRO.2017.10.23010.1016/j.jclepro.2017.10.230 Search in Google Scholar

[18] Kordi M., Brandt S. A. Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis. Comput. Environ. Urban Syst. 2012:36(1):43–53. https://doi.org/10.1016/J.COMPENVURBSYS.2011.07.00410.1016/j.compenvurbsys.2011.07.004 Search in Google Scholar

[19] Lokesh K., Ladu L., Summerton L. Bridging the Gaps for a ‘Circular’ Bioeconomy: Selection Criteria, Bio-Based Value Chain and Stakeholder Mapping. Sustain. 2018:10:1695. https://doi.org/10.3390/SU1006169510.3390/su10061695 Search in Google Scholar

[20] STAR-ProBio. Deliverable D1.2 - Mapping of Relevant Value chains and stakeholders. Roma: Star-ProBio, 2018. Search in Google Scholar

[21] Lin R., et al. Sustainability prioritization framework of biorefinery: A novel multi-criteria decision-making model under uncertainty based on an improved interval goal programming method. J. Clean. Prod. 2020:251:119729. https://doi.org/10.1016/J.JCLEPRO.2019.11972910.1016/j.jclepro.2019.119729 Search in Google Scholar

[22] Zimmerman J. Corporate Entrepreneurship at GE and Intel. J. Bus. Case Stud. 2010:6(5):77. https://doi.org/10.19030/JBCS.V6I5.90210.19030/jbcs.v6i5.902 Search in Google Scholar

[23] Zihare L., Blumberga D. Bioeconomy investments: Market considerations. Environ. Clim. Technol. 2020:24(2):79–91. https://doi.org/10.2478/rtuect-2020-005610.2478/rtuect-2020-0056 Search in Google Scholar

[24] Amatulli C., Caputo T., Guido G. Strategic Analysis through the General Electric/McKinsey Matrix: An Application to the Italian Fashion Industry. Int. J. Bus. Manag. 2011:6(5):61–75. https://doi.org/10.5539/IJBM.V6N5P6110.5539/ijbm.v6n5p61 Search in Google Scholar

[25] Morrison A., Wensley R. Boxing up or boxed in? A short history of the Boston consulting group share/growth matrix. J. Mark. Manag. 1991:7(2):105–129. https://doi.org/10.1080/0267257X.1991.996414510.1080/0267257X.1991.9964145 Search in Google Scholar

[26] Decuseară N.-R. Using the General Electric / Mckinsey Matrix in the Process of Selecting the Central and East European Markets [Online]. [Accessed 28.03.2022]. Available: http://www.business-toolstemplates.com/General_Electric_GE_mckinsey_matrix.htm Search in Google Scholar

[27] D’Amato D., Gaio M., Semenzin E. A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective. Sci. Total Environ. 2020:706:135859. https://doi.org/10.1016/J.SCITOTENV.2019.13585910.1016/j.scitotenv.2019.13585931841854 Search in Google Scholar

[28] Cristóbal J., et al. Environmental sustainability assessment of bioeconomy value chains. Biomass and Bioenergy 2016:89:159–171. https://doi.org/10.1016/J.BIOMBIOE.2016.02.00210.1016/j.biombioe.2016.02.002 Search in Google Scholar

[29] Ubando A. T., Felix C. B., Chen W. H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020:299:122585. https://doi.org/10.1016/j.biortech.2019.12258510.1016/j.biortech.2019.12258531901305 Search in Google Scholar

[30] Zanghelini G. M., Cherubini E., Soares S. R. How Multi-Criteria Decision Analysis (MCDA) is aiding Life Cycle Assessment (LCA) in results interpretation. J. Clean. Prod. 2018:172:609–622. https://doi.org/10.1016/j.jclepro.2017.10.23010.1016/j.jclepro.2017.10.230 Search in Google Scholar

[31] Jouan J., Ridier A., Carof M. SYNERGY: a bio economic model assessing the economic and environmental impacts of increased regional protein self-sufficiency [Online]. [Accessed 13.04.2022]. Available: https://hal.archivesouvertes.fr/hal-01937084 Search in Google Scholar

[32] Jouan J., Ridier A., Carof M. SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability. Ecol. Econ. 2020:175:106688. https://doi.org/10.1016/j.ecolecon.2020.10668810.1016/j.ecolecon.2020.106688 Search in Google Scholar

[33] Chopin P., et al. A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island. Agric. Syst. 2017:157:316–329. https://doi.org/10.1016/j.agsy.2016.10.00310.1016/j.agsy.2016.10.003 Search in Google Scholar

[34] Chopin P., et al. MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics. Agric. Syst. 2015:140:26–39. https://doi.org/10.1016/j.agsy.2015.08.00610.1016/j.agsy.2015.08.006 Search in Google Scholar

[35] Therond O., et al. Methodology to translate policy assessment problems into scenarios: the example of the SEAMLESS integrated framework. Environ. Sci. Policy 2009:12(5):619–630. https://doi.org/10.1016/j.envsci.2009.01.01310.1016/j.envsci.2009.01.013 Search in Google Scholar

[36] Belhouchette H., et al. Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain. Agric. Syst. 2011:104(2):135–145. https://doi.org/10.1016/j.agsy.2010.09.00310.1016/j.agsy.2010.09.003 Search in Google Scholar

[37] Stöckle C. O., Donatelli M., Nelson R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003:18(3–4):289–307. https://doi.org/10.1016/S1161-0301(02)00109-010.1016/S1161-0301(02)00109-0 Search in Google Scholar

[38] Donatelli M., et al. A Component-Based Framework for Simulating Agricultural Production and Externalities. A Component-Based Framework for Simulating Agricultural Production and Externalities. In: Brouwer, F., Ittersum, M. (eds) Environmental and Agricultural Modelling. Springer, Dordrecht, 2010. https://doi.org/10.1007/978-90-481-3619-3_410.1007/978-90-481-3619-3_4 Search in Google Scholar

[39] Townsend T. J., Ramsden S. J., Wilson P. Analysing reduced tillage practices within a bio-economic modelling framework. Agric. Syst. 2016:146:91–102. https://doi.org/10.1016/j.agsy.2016.04.00510.1016/j.agsy.2016.04.005491361727375318 Search in Google Scholar

[40] Glithero N. J., Ramsden S. J., Wilson P. Farm systems assessment of bioenergy feedstock production: Integrating bioeconomic models and life cycle analysis approaches. Agricultural Systems 2012:109:53–64. https://doi.org/10.1016/j.agsy.2012.02.00510.1016/j.agsy.2012.02.005426868825540473 Search in Google Scholar

[41] Perissi I., et al. Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP). Sustain. 2021:13(4):1967. https://doi.org/10.3390/su1304196710.3390/su13041967 Search in Google Scholar

[42] Madden S. M., Ryan A., Walsh P. Exploratory Study on Modelling Agricultural Carbon Emissions in Ireland. Agric. 2022:12(1):34. https://doi.org/10.3390/agriculture1201003410.3390/agriculture12010034 Search in Google Scholar

[43] Zihare L., et al. Bioresource Value Model. Case of Fisheries. Environ. Clim. Technol. 2021:25(1):1179–1192. https://doi.org/10.2478/rtuect-2021-008910.2478/rtuect-2021-0089 Search in Google Scholar

[44] Paenson I. Collection of Statistical Data. Systematic Glossary of the Terminology of Statistical Methods. Elsevier, 1970.10.1016/B978-0-08-012285-4.50008-0 Search in Google Scholar

[45] FAOSTAT. Commodity Balances (non-food) [Online]. [Accessed 17.01.2022]. Available: https://www.fao.org/faostat/en/#data/BC Search in Google Scholar

[46] Pavičević M., et al. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Appl. Energy 2020:267:115100. https://doi.org/10.1016/J.APENERGY.2020.11510010.1016/j.apenergy.2020.115100 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other