1. bookVolume 26 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Biodiesel Production Using Calcined Phosphate Rock as a Precursor of Calcium Oxide Heterogeneous Catalyst

Publié en ligne: 05 Nov 2022
Volume & Edition: Volume 26 (2022) - Edition 1 (January 2022)
Pages: 968 - 981
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais

[1] Ong H. C. et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021:228:113647. https://doi.org/10.1016/j.enconman.2020.113647 Search in Google Scholar

[2] Zhang Y., Duan L., Esmaeili H. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass Bioenergy 2022:158:106356. https://doi.org/10.1016/j.biombioe.2022.106356 Search in Google Scholar

[3] Anwar M., Rasul M. G., Ashwath N. Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Convers. Manag. 2018:156:103–112. https://doi.org/10.1016/j.enconman.2017.11.004 Search in Google Scholar

[4] Ma F., Hanna M. A. Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresour. Technol. 1999:70(1):1–15. https://doi.org/10.1016/S0960-8524(99)00025-5 Search in Google Scholar

[5] Okolie J. A., Ivan Escobar J., Umenweke G., Khanday W., Okoye P. U. Continuous biodiesel production: A review of advances in catalysis, micro fluidic and cavitation reactors. Fuel 2022:307:121821. https://doi.org/10.1016/j.fuel.2021.121821 Search in Google Scholar

[6] Gebremariam S. N., Marchetti J. M. Economics of biodiesel production: Review. Energy Convers. Manag. 2018:168:74–84. https://doi.org/10.1016/j.enconman.2018.05.002 Search in Google Scholar

[7] Rudolf Diesel – an overview. ScienceDirect Topics. [Online]. [Accessed 17.03.2017]. Available: https://www.sciencedirect.com/topics/engineering/rudolf-diesel Search in Google Scholar

[8] Gui M. M., Lee K. T., Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008:33(11):1646–1653. https://doi.org/10.1016/j.energy.2008.06.002 Search in Google Scholar

[9] Cavalcante F. T. T. et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021:288:119577. https://doi.org/10.1016/j.fuel.2020.119577 Search in Google Scholar

[10] Modiba E., Osifo P., Rutto H. Biodiesel production from baobab (Adansonia digitata L.) seed kernel oil and its fuel properties. Ind. Crops Prod. 2014:59:50–54. https://doi.org/10.1016/j.indcrop.2014.04.044 Search in Google Scholar

[11] Naima K., Liazid A. Waste oils as alternative fuel for diesel engine: A review. J. Pet. Technol. Altern. Fuels 2013:4(3):30–43. https://doi.org/10.5897/JPTAF12.026 Search in Google Scholar

[12] Mwenge P., Rutto H., Enweremadu C. Production of Biodiesel using Calcined Brine Sludge Waste from Chor-Alkali Industry as a Heterogeneous Catalyst. Environ. Clim. Technol. 2021:25(1):621–630. https://doi.org/10.2478/rtuect-2021-0046 Search in Google Scholar

[13] Bombo K., Lekgoba T., Azeez O., Muzenda E. Production of Biodiesel from Moringa Oleifera and Jatropha Curcas Seed Oils over a Modified ZnO/Fly Ash Catalyst. Environ. Clim. Technol. 2021:25(1):151–160. https://doi.org/10.2478/rtuect-2021-0010 Search in Google Scholar

[14] Salleh Z. M., Yahya N. Y., Nasarudin M. A. S., Herman D. N. Transesterification of used frying oil by activated banana peels waste catalyst for biodiesel production. Mater. Today Proc. 2021:57(P3):1235–1240. https://doi.org/10.1016/j.matpr.2021.11.074 Search in Google Scholar

[15] Gouran A., Aghel B., Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel 2021:295:120542. https://doi.org/10.1016/j.fuel.2021.120542 Search in Google Scholar

[16] Laskar I. B., et al. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018:36:20131–20142. https://doi.org/10.1039/C8RA02397B Search in Google Scholar

[17] Sahar et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018:41:220–226. https://doi.org/10.1016/j.scs.2018.05.037 Search in Google Scholar

[18] Leung D. Y. C., Wu X., Leung M. K. H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010:87(4):1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006 Search in Google Scholar

[19] Eisa M. Y., Dabbas M. A., Abdulla F. H. Quantitative identification of phosphate using X-Ray diffraction and Fourier transform infra-red (FTIR) spectroscopy. Int. J. Curr. Microbiol. App. Sci. 2015:4(1):270–283. Search in Google Scholar

[20] ANR R., Saleh A. A., Islam Md. S., Hamdan S., Maleque Md. A. Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters. Energy Fuels 2016:30(1):334–343. https://doi.org/10.1021/acs.energyfuels.5b01899 Search in Google Scholar

[21] Mosaddegh E., Hassankhani A. Preparation and characterization of nano-CaO based on eggshell waste: Novel and green catalytic approach to highly efficient synthesis of pyrano [4,3-b] pyrans. Chin. J. Catal. 2014:35(3):351–356. https://doi.org/10.1016/S1872-2067(12)60755-4 Search in Google Scholar

[22] Foroutan R., Mohammadi R., Esmaeili H., Mirzaee Bektashi F., Tamjidi S. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Manag. 2020:105:373–383. https://doi.org/10.1016/j.wasman.2020.02.03232120264 Search in Google Scholar

[23] Ali C. H. et al. Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources Part Recovery Util. Environ. Eff. 2018:40(9):1076–1083. https://doi.org/10.1080/15567036.2018.1469691 Search in Google Scholar

[24] Perea A., Kelly T., Hangun-Balkir Y. Utilization of waste seashells and Camelina sativa oil for biodiesel synthesis. Green Chem. Lett. Rev. 2016:9(1):27–32. https://doi.org/10.1080/17518253.2016.1142004 Search in Google Scholar

[25] Endalew A. K., Kiros Y., Zanzi R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 2011:35(9):3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011 Search in Google Scholar

[26] Tran-Nguyen P. L., Ong L. K., Go A. W., Ju Y.-H., Angkawijaya A. E. Non-catalytic and heterogeneous acid/base-catalyzed biodiesel production: Recent and future developments. Asia-Pac. J. Chem. Eng. 2020:15(3):e2490. https://doi.org/10.1002/apj.2490 Search in Google Scholar

[27] Sulaiman N. F., Wan Abu Bakar W. A., Ali R. Response surface methodology for the optimum production of biodiesel over Cr/Ca/γ-Al2O3 catalyst: Catalytic performance and physicochemical studies. Renew. Energy 2017:113:697–705. https://doi.org/10.1016/j.renene.2017.06.007 Search in Google Scholar

[28] Rabie A. M., Shaban M., Abukhadra M. R., Hosny R., Ahmed S. A., Negm N. A. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J. Mol. Liq. 2019:279:224–231. https://doi.org/10.1016/j.molliq.2019.01.096 Search in Google Scholar

[29] Gupta J., Agarwal M. Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conf. Proc. 2016:1724(1):020066. https://doi.org/10.1063/1.4945186 Search in Google Scholar

[30] Soetaredjo F. E., Ayucitra A., Ismadji S., Maukar A. L. KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Appl. Clay Sci. 2011:53(2):341–346. https://doi.org/10.1016/j.clay.2010.12.018 Search in Google Scholar

[31] Rezania S. et al. Biodiesel production from wild mustard (Sinapis Arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles. Fuel 2022:307:121759. https://doi.org/10.1016/j.fuel.2021.121759 Search in Google Scholar

[32] Sahar et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018:41:220–226. https://doi.org/10.1016/j.scs.2018.05.037 Search in Google Scholar

[33] Banerjee S., Rout S., Banerjee S., Atta A., Das D. Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energy Convers. Manag. 2019:195:844–853. https://doi.org/10.1016/j.enconman.2019.05.060 Search in Google Scholar

[34] Putra M. D., Irawan C., Udiantoro, Ristianingsih Y., Nata I. F. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. J. Clean. Prod. 2018:195:1249–1258. https://doi.org/10.1016/j.jclepro.2018.06.010 Search in Google Scholar

[35] Roy T., Sahani S., Chandra Sharma Y. Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. J. Clean. Prod. 2020:247:119166. https://doi.org/10.1016/j.jclepro.2019.119166 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo