À propos de cet article

Citez

[1] Sharif M., Zafar M. H., Aqib A. I., Saeed M., Farag M. R., Alagawany M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021:531. https://doi.org/10.1016/j.aquaculture.2020.73588510.1016/j.aquaculture.2020.735885 Search in Google Scholar

[2] Hua K., Cobcroft J. M., Cole A., Condon K., Jerry D. R., Mangott A., Praeger C., Vucko M. J., Zeng C., Zenger K., Strugnell J. M. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019:1:316–329. https://doi.org/10.1016/j.oneear.2019.10.01810.1016/j.oneear.2019.10.018 Search in Google Scholar

[3] Li X., Zheng S., Wu G. Nutrition and functions of amino acids in fish. Amino acids in Nutrition and Health. Springer, 2021:133–168. https://doi.org/10.1007/978-3-030-54462-1_810.1007/978-3-030-54462-1_833770406 Search in Google Scholar

[4] Agboola J. O., Øverland M., Skrede A., Hansen J. Ø. Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture 2021:13(2):949–970. https://doi.org/10.1111/raq.1250710.1111/raq.12507 Search in Google Scholar

[5] Ahmed M., Liang H., Chisomo Kasiya H., Ji K., Ge X., Ren M., Liu B., Zhu X., Sun A. Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquaculture Nutrition 2019:25(1):205–214. https://doi.org/10.1111/anu.1284410.1111/anu.12844 Search in Google Scholar

[6] Matassa S., Boon N., Pikaar I., Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint. Microbial Biotechnology 2016:9(5):568–575. https://doi.org/10.1111/1751-7915.1236910.1111/1751-7915.12369499317427389856 Search in Google Scholar

[7] Vethathirri R. S., Santillan E., Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. Bioresource Technology 2021:341. https://doi.org/10.1016/j.biortech.2021.12572310.1016/j.biortech.2021.12572334411939 Search in Google Scholar

[8] Jones S. W., Karpol A., Friedman S., Maru B. T., Tracy B. P. Recent advances in single cell protein use as a feed ingredient in aquaculture. Current Opinion in Biotechnology 2020:61:189–197. https://doi.org/10.1016/j.copbio.2019.12.02610.1016/j.copbio.2019.12.02631991311 Search in Google Scholar

[9] Carranza-Méndez R. C., Chávez-González M. L., Sepúlveda-Torre L., Aguilar C. N., Govea-Salas M., Ramos- González R. Production of single cell protein from orange peel residues by Candida utilis. Biocatalysis and Agricultural Biotechnology 2022:40:1–9. https://doi.org/10.1016/j.bcab.2022.10229810.1016/j.bcab.2022.102298 Search in Google Scholar

[10] Ritala A., Häkkinen S. T., Toivari M., Wiebe M. G. Single cell protein-state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in Microbiology 2017:8. https://doi.org/10.3389/fmicb.2017.0200910.3389/fmicb.2017.02009564552229081772 Search in Google Scholar

[11] Thiviya P., Gamage A., Kapilan R., Merah O., Madhujith T. Single Cell Protein Production Using Different Fruit Waste : A Review. 2022:9(7):178. https://doi.org/10.3390/separations907017810.3390/separations9070178 Search in Google Scholar

[12] Glencross B. D., Huyben D., Schrama J. W. The application of single-cell ingredients in aquaculture feeds–a review. Fishes 2020:5(3):1–39. https://doi.org/10.3390/fishes503002210.3390/fishes5030022 Search in Google Scholar

[13] Patsios S. I., Dedousi A., Sossidou E. N., Zdragas A. Sustainable animal feed protein through the cultivation of YARROWIA lipolytica on agro-industrial wastes and by-products. Sustainability (Switzerland) 2020:12(4). https://doi.org/10.3390/su1204139810.3390/su12041398 Search in Google Scholar

[14] Margareth O., Anders S. Yeast derived from lignocellulosic biomass as a sustainable feed resorce for use in aquaculture. Journal of the Science of Food and Agriculture. 2016:97(3):733–742. https://doi.org/10.1002/jsfa.800710.1002/jsfa.800727558451 Search in Google Scholar

[15] Jach M. E., Baj T., Juda M., Świder R., Mickowska B., Malm A. Statistical evaluation of growth parameters in biofuel waste as a culture medium for improved production of single cell protein and amino acids by Yarrowia lipolytica. AMB Express 2020:10:35. https://doi.org/10.1186/s13568-020-00968-x10.1186/s13568-020-00968-x702888232072349 Search in Google Scholar

[16] Reihani S. F. S., Khosravi-Darani K. Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology 2019:37:34–40. https://doi.org/10.1016/j.ejbt.2018.11.00510.1016/j.ejbt.2018.11.005 Search in Google Scholar

[17] Dhanasekaran D., Lawanya S., Saha S. Production of Single Cell Protein From Pineapple Waste. 2011:8:26–32. Search in Google Scholar

[18] Siddique S., Shakir H. A., Qazi J. I., Tabinda A. B., Irfan M. Screening of some agri-wastes for economical cultivation of Candida tropicalis SS1. Punjab University Journal of Zoology. 2016:31:31–37. Search in Google Scholar

[19] Gao Y., Li D., Liu Y. Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology 2012:62:1165–1172. https://doi.org/10.1007/s13213-011-0356-910.1007/s13213-011-0356-9 Search in Google Scholar

[20] Yadav J. S. S., Yan S., Pilli S., Kumar L., Tyagi R. D., Surampalli R. Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances 2015:33(6):756–774. https://doi.org/10.1016/j.biotechadv.2015.07.00210.1016/j.biotechadv.2015.07.00226165970 Search in Google Scholar

[21] Myint K. T., Otsuka M., Okubo A., Mitsuhashi R., Oguro A., Maeda H., Shigeno T., Sato K., Nakajima-Kambe T. Isolation and identification of flower yeasts for the development of mixed culture to produce single-cell protein from waste milk. Bioresource Technology Reports 2020:10:100401. https://doi.org/10.1016/j.biteb.2020.10040110.1016/j.biteb.2020.100401 Search in Google Scholar

[22] Arous F., Azabou S., Jaouani A., Zouari-Mechichi H., Nasri M., Mechichi T. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts. Environmental Science and Pollution Research 2016:23:6783–6792. https://doi.org/10.1007/s11356-015-5924-210.1007/s11356-015-5924-226662789 Search in Google Scholar

[23] Patelski P., Berłowska J., Balcerek M., Dziekońska-Kubczak U., Pielech-Przybylska K., Dygas D., Jedrasik J. Conversion of potato industrywaste into fodder yeast biomass. Processes 2020:8(4):1–8. https://doi.org/10.3390/pr804045310.3390/pr8040453 Search in Google Scholar

[24] Michalik B., Biel W., Lubowicki R., Jacyno E. Chemical composition and biological value of proteins of the yeast Yarrowia lipolytica growing on industrial glycerol. Canadian Journal of Animal Science 2014:94:99–104. https://doi.org/10.4141/cjas2013-05210.4141/cjas2013-052 Search in Google Scholar

[25] Bratosin B. C., Darjan S., Vodnar D. C. Single cell protein: A potential substitute in human and animal nutrition. Sustainability (Switzerland) 2021:13(16):1–24. https://doi.org/10.3390/su1316928410.3390/su13169284 Search in Google Scholar

[26] Anupama, Ravindra P. Value-added food: Single cell protein. Biotechnology Advances 2000:18(6):459–479. https://doi.org/10.1016/S0734-9750(00)00045-810.1016/S0734-9750(00)00045-8 Search in Google Scholar

[27] Bertolo A. P., Biz A. P., Kempka A. P., Rigo E., Cavalheiro D. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. Journal of Food Science and Technology 2019:56:3697–3706. https://doi.org/10.1007/s13197-019-03833-310.1007/s13197-019-03833-3667585931413397 Search in Google Scholar

[28] Lapeña D., Olsen P. M., Arntzen M., Kosa G., Passoth V., Eijsink V. G. H., Horn S. J. Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess and Biosystems Engineering 2020:43:723–736. https://doi.org/10.1007/s00449-019-02271-x10.1007/s00449-019-02271-x706445331883034 Search in Google Scholar

[29] Bonan C. I. D. G., Tramontina R., dos Santos M. W., Biazi L. E., Soares L. B., Pereira I. O., Hoffmam Z. B., Coutouné N., Squina F. M., Robl D., Ienczak J. L. Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse. Bioenergy Research 2021:15:1169–1181. https://doi.org/10.1007/s12155-021-10255-710.1007/s12155-021-10255-7 Search in Google Scholar

[30] Zheng S., Yang M., Yang Z. Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresource Technology 2005:96(10):1183–1187. https://doi.org/10.1016/j.biortech.2004.09.02210.1016/j.biortech.2004.09.02215683910 Search in Google Scholar

[31] Nicolas O., Aly S., Marius K. S., François T., Cheikna Z., Alfred S. T. Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology 2017:16(8):359–365. https://doi.org/10.5897/AJB2016.1580110.5897/AJB2016.15801 Search in Google Scholar

[32] Umesh M., Priyanka K., Thazeem B., Preethi K. Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste. Arabian Journal for Science and Engineering 2017:42:2361–2369. https://doi.org/10.1007/s13369-017-2519-x10.1007/s13369-017-2519-x Search in Google Scholar

[33] Schultz N., Chang L., Hauck A., Reuss M., Syldatk C. Microbial production of single-cell protein from deproteinized whey concentrates. Applied Microbiology and Biotechnology 2006:69:515–520. https://doi.org/10.1007/s00253-005-0012-z10.1007/s00253-005-0012-z16133331 Search in Google Scholar

[34] Patelski P., Berlowska J., Dziugan P., Pielech-Przybylska K., Balcerek M., Dziekonska U., Kalinowska H. Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP. Journal of Food Engineering 2015:167:32–37. https://doi.org/10.1016/j.jfoodeng.2015.03.03110.1016/j.jfoodeng.2015.03.031 Search in Google Scholar

[35] Gao Z., Wang X., Tan C., Zhou H., Mai K., He G. Effect of dietary methionine levels on growth performance, amino acid metabolism and intestinal homeostasis in turbot (Scophthalmus maximus L.). Aquaculture 2018:498:335–342. https://doi.org/10.1016/j.aquaculture.2018.08.05310.1016/j.aquaculture.2018.08.053 Search in Google Scholar

[36] Gorissen S. H. M., Crombag J. J. R., Senden J. M. G., Waterval W. A. H., Bierau J., Verdijk L. B., van Loon L. J. C. Protein content and amino acid composition of commercially available plant–based protein isolates. Amino Acids 2018:50:1685–1695. https://doi.org/10.1007/s00726-018-2640-510.1007/s00726-018-2640-5624511830167963 Search in Google Scholar

[37] Jach M. E., Serefko A., Ziaja M., Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022:12. https://doi.org/10.3390/metabo1201006310.3390/metabo12010063878059735050185 Search in Google Scholar

[38] Matos Â. P. The Impact of Microalgae in Food Science and Technology. JAOCS, Journal of the American Oil Chemists’ Society 2017:94(11):1333–1350. https://doi.org/10.1007/s11746-017-3050-710.1007/s11746-017-3050-7 Search in Google Scholar

[39] Nasseri A. T., Rasoul-Amini S., Morowvat M. H., Ghasemi Y. Single cell protein: Production and process. American Journal of Food Technology 2011:6(2):103–116. https://doi.org/10.3923/ajft.2011.103.11610.3923/ajft.2011.103.116 Search in Google Scholar

[40] Hansen J. Ø., Lagos L., Lei P., Reveco-Urzua F. E., Morales-Lange B., Hansen L. D., Schiavone M., Mydland L. T., Arntzen M. Ø., Mercado L., Benicio R. T., Øverland M. Down-stream processing of baker’s yeast (Saccharomyces cerevisiae) – Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture 2021:530:735707. https://doi.org/10.1016/j.aquaculture.2020.73570710.1016/j.aquaculture.2020.735707 Search in Google Scholar

[41] Somda M. K., Ouattara C. A. T., Mogmenga I., Nikiema M., Keita I., Ouedraogo N., Traore D., Traore A. S. Optimization of Saccharomyces cerevisiae SKM10 single cell protein production from mango (Magnifera indica L.) waste using response surface methodology. African Journal of Biotechnology 2017:16(45):2127–2133. https://doi.org/10.5897/AJB2017.1621010.5897/AJB2017.16210 Search in Google Scholar

[42] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007 Search in Google Scholar

[43] Hezarjaribi M., Ardestani F., Ghorbani H. R. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess. Applied Biochemistry and Biotechnology 2016:179:1336–1345. https://doi.org/10.1007/s12010-016-2069-910.1007/s12010-016-2069-927090426 Search in Google Scholar

[44] Jalasutram V., Kataram S., Gandu B., Anupoju G. R. Single cell protein production from digested and undigested poultry litter by Candida utilis: Optimization of process parameters using response surface methodology. Clean Technologies and Environmental Policy 2013:15:265–273. https://doi.org/10.1007/s10098-012-0504-310.1007/s10098-012-0504-3 Search in Google Scholar

[45] Liu N., Santala S., Stephanopoulos G. Mixed carbon substrates: a necessary nuisance or a missed opportunity? Current Opinion in Biotechnology 2020:62:15–21. https://doi.org/10.1016/j.copbio.2019.07.00310.1016/j.copbio.2019.07.00331513988 Search in Google Scholar

[46] Rages A. A., Haider M. M., Aydin M. Alkaline hydrolysis of olive fruits wastes for the production of single cell protein by Candida lipolytica. Biocatalysis and Agricultural Biotechnology 2021:33:101999. https://doi.org/10.1016/j.bcab.2021.10199910.1016/j.bcab.2021.101999 Search in Google Scholar

[47] Amata I. A. Yeast a single cell protein: characteristocs and metabolism. International Journal of Applied Biology and Pharmaceutical Technology 2013:4:158–170. Search in Google Scholar

[48] Kieliszek M., Błażejak S., Bzducha-Wróbel A., Kot A. M. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biological Trace Element Research 2019:187:316–327. https://doi.org/10.1007/s12011-018-1342-x10.1007/s12011-018-1342-x631505529675568 Search in Google Scholar

[49] Baghban R., Farajnia S., Rajabibazl M., Ghasemi Y., Mafi A. A., Hoseinpoor R., Rahbarnia L., Aria M. Yeast Expression Systems: Overview and Recent Advances. Molecular Biotechnology 2019:61:365–384. https://doi.org/10.1007/s12033-019-00164-810.1007/s12033-019-00164-830805909 Search in Google Scholar

[50] Hu Z., He B., Ma L., Sun Y., Niu Y., Zeng B. Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology 2017:57:270–277. https://doi.org/10.1007/s12088-017-0657-110.1007/s12088-017-0657-1557477528904410 Search in Google Scholar

[51] Huezo L., Shah A., Michel F. C. Effects of ultrasound on fermentation of glucose to ethanol by Saccharomyces cerevisiae. Fermentation 2019:5(1):5010016. https://doi.org/10.3390/fermentation501001610.3390/fermentation5010016 Search in Google Scholar

[52] Karim A., Gerliani N., Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology 2020:333:1–24. https://doi.org/10.1016/j.ijfoodmicro.2020.10881810.1016/j.ijfoodmicro.2020.10881832805574 Search in Google Scholar

[53] Tang W., Wang Y., Zhang J., Cai Y., He Z. Biosynthetic pathway of carotenoids in rhodotorula and strategies for enhanced their production. Journal of Microbiology and Biotechnology 2019:29:507–517. https://doi.org/10.4014/jmb.1801.0102210.4014/jmb.1801.0102230856706 Search in Google Scholar

[54] Rubio-Ribeaux D., da Silva Andrare R. F. da Silva G. S., de Holanda R. A., Pele M. A., Nunes P., Vilar J. J. C., de Resende.-Stoianoff M. A., Campos_Takaki G. M. Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research 2017:11:981–991. https://doi.org/10.5897/AJMR2017.848610.5897/AJMR2017.8486 Search in Google Scholar

[55] Da Silva I. A., Bezerra K. G. O., Durval I. J. B., Farias C. B. B., Da Silva C. J. G., Da Silva Santos E. M., De Luna J. M., Sarubbo L. A. Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by candida bombicola URM 3718. Chemical Engineering Transactions 2020:79:67–72. Search in Google Scholar

[56] Monteiro R. R. C., Virgen-Ortiz J. J., Berenguer-Murcia Á., da Rocha T. N., dos Santos J. C. S., Alcántara A. R., Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today 2021:362:141–154. https://doi.org/10.1016/j.cattod.2020.03.02610.1016/j.cattod.2020.03.026 Search in Google Scholar

[57] Ohlsson J. A., Olstorpe M., Passoth V., Leong S. L. Yeast single cell protein production from a biogas co-digestion substrate. bioRxiv 2019:1–27. https://doi.org/10.1101/76634510.1101/766345 Search in Google Scholar

[58] Akanni G. B., du Preez J. C., Steyn L., Kilian S. G. Protein enrichment of an Opuntia ficus-indica cladode hydrolysate by cultivation of Candida utilis and Kluyveromyces marxianus. Journal of the Science of Food and Agriculture 2015:95(5):1094–1102. https://doi.org/10.1002/jsfa.698510.1002/jsfa.6985440200725371280 Search in Google Scholar

[59] Magalhães C. E. B., Souza-Neto M. S., Astolfi-Filho S., Matos I. T. S. R. Candida tropicalis able to produce yeast single cell protein using sugarcane bagasse hemicellulosic hydrolysate as carbon source. Biotechnology Research and Innovation 2018:2(1):19–21. https://doi.org/10.1016/j.biori.2018.08.00210.1016/j.biori.2018.08.002 Search in Google Scholar

[60] Kurcz A., Błażejak S., Kot A. M., Bzducha-Wróbel A., Kieliszek M. Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. Waste and Biomass Valorization 2018:9:57–64. https://doi.org/10.1007/s12649-016-9782-z10.1007/s12649-016-9782-z Search in Google Scholar

[61] Bekatorou A., Psarianos C., Koutinas A. A. Production of food grade yeasts. Food Technology and Biotechnology. 2006:44:407–415. Search in Google Scholar

[62] Padkina M. V., Sambuk E. V. Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review). Applied Biochemistry and Microbiology 2018:54:337–351. https://doi.org/10.1134/S000368381804010510.1134/S0003683818040105 Search in Google Scholar

[63] Bettencourt S., Miranda C., Pozdniakova T. A., Sampaio P., Franco-Duarte R., Pais C. Single cell oil production by oleaginous yeasts grown in synthetic and waste-derived volatile fatty acids. Microorganisms 2020:8:(11):8111809. https://doi.org/10.3390/microorganisms811180910.3390/microorganisms8111809769856833213005 Search in Google Scholar

[64] Spalvins K., Geiba Z., Kusnere Z., Blumberga D. Waste Cooking Oil as Substrate for Single Cell Protein Production by Yeast Yarrowia lipolytica. Environmental and Climate Technologies 2020:24(3):457–469. https://doi.org/10.2478/rtuect-2020-011610.2478/rtuect-2020-0116 Search in Google Scholar

[65] Tian Y., Zhang Y., Sun Z., Li J., Liu D. Yeast Compound for Single-cell Protein Production by Potato Starch Processing Wastewater Fermentation. DEStech Transactions on Environment, Energy and Earth Sciences 2017:98–104. https://doi.org/10.12783/dteees/ese2017/1433210.12783/dteees/ese2017/14332 Search in Google Scholar

[66] Broach J. R. Nutritional control of growth and development in yeast. Genetics 2012:192(1):73–105. https://doi.org/10.1534/genetics.111.13573110.1534/genetics.111.135731343054722964838 Search in Google Scholar

[67] Wu J., Hu J., Zhao S., He M., Hu G., Ge X., Peng N. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Applied Biochemistry and Biotechnology 2018:185:163–178. https://doi.org/10.1007/s12010-017-2644-810.1007/s12010-017-2644-8593788829098561 Search in Google Scholar

[68] Rajoka M. I., Kiani M. A. T., Khan S., Awan M. S., Hashmi A. S. Production of single cell protein from rice polishings using Candida utilis. World Journal of Microbiology and Biotechnology 2004:20:297–301. https://doi.org/10.1023/B:WIBI.0000023845.96123.dd10.1023/B:WIBI.0000023845.96123.dd Search in Google Scholar

[69] El Bialy H., Gomaa O. M., Azab K. S. Conversion of oil waste to valuable fatty acids using Oleaginous yeast. World Journal of Microbiology and Biotechnology 2011:27:2791–2798. https://doi.org/10.1007/s11274-011-0755-x10.1007/s11274-011-0755-x Search in Google Scholar

[70] Dourou M., Aggeli D., Papanikolaou S., Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology 2018:102:2509–2523. https://doi.org/10.1007/s00253-018-8813-z10.1007/s00253-018-8813-z29423634 Search in Google Scholar

[71] Daskalaki A., Perdikouli N., Aggeli D., Aggelis G. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Applied Microbiology and Biotechnology 2019:103:8585–8596. https://doi.org/10.1007/s00253-019-10088-710.1007/s00253-019-10088-731511932 Search in Google Scholar

[72] Dourou M., Mizerakis P., Papanikolaou S., Aggelis G. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Applied Microbiology and Biotechnology 2017:101:7213–7226. https://doi.org/10.1007/s00253-017-8455-610.1007/s00253-017-8455-628801795 Search in Google Scholar

[73] Rajendran S., Kapilan R., Vasantharuba S. Single Cell Protein Production from Papaw and Banana Fruit Juices Using Baker’s Yeast. American-Euroasian J. Agric. & Environ. Sci. 2018:18:168–172. Search in Google Scholar

[74] Kot A. M., Błażejak S., Kurcz A., Bryś J., Gientka I., Bzducha-Wróbel A., Maliszewska M., Reczek L. Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electronic Journal of Biotechnology 2017:27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.00710.1016/j.ejbt.2017.01.007 Search in Google Scholar

[75] Zakhartsev M., Reuss M. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Research 2018:18(6):foy052. https://doi.org/10.1093/femsyr/foy05210.1093/femsyr/foy05229718340 Search in Google Scholar

[76] Huyben D., Nyman A., Vidaković A., Passoth V., Moccia R., Kiessling A., Dicksved J., Lundh T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 2017:473:528–537. https://doi.org/10.1016/j.aquaculture.2017.03.02410.1016/j.aquaculture.2017.03.024 Search in Google Scholar

[77] Kasozi N., Iwe G., Sadik K., Asizua D., Namulawa V. T. Dietary amino acid requirements of pebbly fish, Alestes baremoze (Joannis, 1835) based on whole body amino acid composition. Aquaculture Reports 2019:14:100197 https://doi.org/10.1016/j.aqrep.2019.10019710.1016/j.aqrep.2019.100197 Search in Google Scholar

[78] Miller E. L. Food and Agriculture Organisation of the United Nations, Rome, 2004. [Online]. [Accessed: 15 March 2022]. Available: https://www.fao.org/3/y5019e/y5019e06.htm#bm06 Search in Google Scholar

[79] Delamare–Deboutteville J., Batstone D. J., Kawasaki M., Stegman S., Salini M., Tabrett S., Smullen R., Barnes A. C., Hülsen T. Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X 2019:4:100031. https://doi.org/10.1016/j.wroa.2019.10003110.1016/j.wroa.2019.100031661459931334494 Search in Google Scholar

[80] Donadelli R. A., Aldrich C. G., Jones C. K., Beyer R. S. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poultry Science 2019:98(3):1371–1378. https://doi.org/10.3382/ps/pey46210.3382/ps/pey462637743530351365 Search in Google Scholar

[81] Overland M., Karlsson A., Mydland L. T., Romarheim O. H., Skrede A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 2013:402–403:1–7. https://doi.org/10.1016/j.aquaculture.2013.03.01610.1016/j.aquaculture.2013.03.016 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other