1. bookVolume 26 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Production of Biodiesel Using Phosphate Rock as a Heterogeneous Catalyst. An Optimized Process Using Surface Response Methodology

Publié en ligne: 11 Oct 2022
Volume & Edition: Volume 26 (2022) - Edition 1 (January 2022)
Pages: 822 - 835
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais

[1] Chozhavendhan S., et al. A review on influencing parameters of biodiesel production and purification processes. Curr. Res. Green Sustain. Chem. 2020:1–2:1–6. https://doi.org/10.1016/j.crgsc.2020.04.00210.1016/j.crgsc.2020.04.002 Search in Google Scholar

[2] Ahmad A. L., et al. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustain. Energy Rev. 2011:15(1):584–583. https://doi.org/10.1016/j.rser.2010.09.01810.1016/j.rser.2010.09.018 Search in Google Scholar

[3] Mandari V., Devarai S. K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review. BioEnergy Res. 2021:15:935–961. https://doi.org/10.1007/s12155-021-10333-w10.1007/s12155-021-10333-w847698734603592 Search in Google Scholar

[4] Ewunie G. A., et al. Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review. Renew. Sustain. Energy Rev. 2021:137:110500. https://doi.org/10.1016/j.rser.2020.11050010.1016/j.rser.2020.110500 Search in Google Scholar

[5] Elkelawy M., et al. A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Convers. Manag. X 2022:14:100177. https://doi.org/10.1016/j.ecmx.2021.10017710.1016/j.ecmx.2021.100177 Search in Google Scholar

[6] Singh N. K., Singh Y., Sharma A. Optimization of biodiesel synthesis from Jojoba oil via supercritical methanol: A response surface methodology approach coupled with genetic algorithm. Biomass Bioenergy 2022:156:106332. https://doi.org/10.1016/j.biombioe.2021.10633210.1016/j.biombioe.2021.106332 Search in Google Scholar

[7] Gebremariam S. N., Marchetti J. M. Economics of biodiesel production: Review. Energy Convers. Manag. 2018:168:74–84. https://doi.org/10.1016/j.enconman.2018.05.00210.1016/j.enconman.2018.05.002 Search in Google Scholar

[8] Hosseinzadeh-Bandbafha H., et al. Managing the hazardous waste cooking oil by conversion into bioenergy through the application of waste-derived green catalysts: A review. J. Hazard. Mater. 2022:424:127636. https://doi.org/10.1016/j.jhazmat.2021.12763610.1016/j.jhazmat.2021.12763634740507 Search in Google Scholar

[9] Kalu-Uka G. M., et al. Prospects for biodiesel production from Macrotermes nigeriensis: Process optimization and characterization of biodiesel properties. Biomass Bioenergy 2021:146:105980. https://doi.org/10.1016/j.biombioe.2021.10598010.1016/j.biombioe.2021.105980 Search in Google Scholar

[10] Tabatabaei M., et al. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019:74:239–303. https://doi.org/10.1016/j.pecs.2019.06.00110.1016/j.pecs.2019.06.001 Search in Google Scholar

[11] Lee D.-W., Park Y.-M., Lee K.-Y. Heterogeneous Base Catalysts for Transesterification in Biodiesel Synthesis. Catal. Surv. Asia 2009:13(2):63–77. https://doi.org/10.1007/s10563-009-9068-610.1007/s10563-009-9068-6 Search in Google Scholar

[12] Mazaheri H., et al. An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies 2021:14:13. https://doi.org/10.3390/en1413395010.3390/en14133950 Search in Google Scholar

[13] Aransiola E. F., et al. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014:61:276–297. https://doi.org/10.1016/j.biombioe.2013.11.01410.1016/j.biombioe.2013.11.014 Search in Google Scholar

[14] Laghrib F., et al. Best of advanced remediation process: treatment of heavy metals in water using phosphate materials. Int. J. Environ. Anal. Chem. 2021:101(9):1192–1208. https://doi.org/10.1080/03067319.2019.167860 Search in Google Scholar

[15] Bezerra M. A., et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008:76(5):965–977. https://doi.org/10.1016/j.talanta.2008.05.01910.1016/j.talanta.2008.05.01918761143 Search in Google Scholar

[16] Mishra V. K., Goswami R. A review of production, properties and advantages of biodiesel. Biofuels 2018:9(2):273–289. https://doi.org/10.1080/17597269.2017.133635010.1080/17597269.2017.1336350 Search in Google Scholar

[17] Abuhabaya A., et al. The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Process. Technol. 2013:113:57–62. https://doi.org/10.1016/j.fuproc.2013.03.02510.1016/j.fuproc.2013.03.025 Search in Google Scholar

[18] Sahar et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018:41:220–226. https://doi.org/10.1016/j.scs.2018.05.03710.1016/j.scs.2018.05.037 Search in Google Scholar

[19] A. Abuhabaya, J. Fieldhouse, and D. Brown. The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Process. Technol. 2013:113:57–62. https://doi.org/10.1016/j.fuproc.2013.03.02510.1016/j.fuproc.2013.03.025 Search in Google Scholar

[20] Lee H. V., et al. Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process. Technol. 2011:92(12):2420–2428. https://doi.org/10.1016/j.fuproc.2011.08.01810.1016/j.fuproc.2011.08.018 Search in Google Scholar

[21] Foroutan R., et al. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Manag. 2020:105:373–383. https://doi.org/10.1016/j.wasman.2020.02.03210.1016/j.wasman.2020.02.03232120264 Search in Google Scholar

[22] Soejoko D. S., Tjia M. O. Infrared spectroscopy and X ray diffraction study on the morphological variations of carbonate and phosphate compounds in giant prawn (Macrobrachium rosenbergii) skeletons during its moulting period. Journal of Material Sciences 2003:38:2087–2093. https://doi.org/10.1023/A:102356622783610.1023/A:1023566227836 Search in Google Scholar

[23] Nayebzadeh H., Saghatoleslami N., Tabasizadeh M. Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. J. Taiwan Inst. Chem. Eng. 2016:68:379–386. https://doi.org/10.1016/j.jtice.2016.09.04110.1016/j.jtice.2016.09.041 Search in Google Scholar

[24] Yatish K. V., et al. Optimization of scum oil biodiesel production by using response surface methodology. Process Saf. Environ. Prot. 2016:102:667–672. https://doi.org/10.1016/j.psep.2016.05.02610.1016/j.psep.2016.05.026 Search in Google Scholar

[25] Chumuang N., Punsuvon V. Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent. J. Chem. 2017:2017:1–9. https://doi.org/10.1155/2017/419081810.1155/2017/4190818 Search in Google Scholar

[26] Dharma S., et al. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Convers. Manag. 2016:115:178–190. https://doi.org/10.1016/j.enconman.2016.02.03410.1016/j.enconman.2016.02.034 Search in Google Scholar

[27] Yahya S., Muhamad Wahab S. K., Harun F. W. Optimization of biodiesel production from waste cooking oil using Fe- Montmorillonite K10 by response surface methodology. Renew. Energy 2020:157:164–172. https://doi.org/10.1016/j.renene.2020.04.14910.1016/j.renene.2020.04.149 Search in Google Scholar

[28] Bora A. P., et al. Biodiesel synthesis from Mesua ferrea oil using waste shell derived carbon catalyst. Renew. Energy 2018:121:195–204. https://doi.org/10.1016/j.renene.2018.01.03610.1016/j.renene.2018.01.036 Search in Google Scholar

[29] Helmi M., et al. Phosphomolybdic acid/graphene oxide as novel green catalyst using for biodiesel production from waste cooking oil via electrolysis method: Optimization using with response surface methodology (RSM). Fuel 2021:287:119528. https://doi.org/10.1016/j.fuel.2020.11952810.1016/j.fuel.2020.119528 Search in Google Scholar

[30] Mwenge P., Rutto H., Enweremadu C. Biodiesel production using Chlor-alkali brine sludge waste as a heterogeneous catalyst: optimisation using response surface methodology. Int. J. Sustain. Energy 2021:41(7):832–845. https://doi.org/10.1080/14786451.2021.198604210.1080/14786451.2021.1986042 Search in Google Scholar

[31] Dhawane S. H., Kumar T., Halder G. Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renew. Energy 2016:89:506–514. https://doi.org/10.1016/j.renene.2015.12.02710.1016/j.renene.2015.12.027 Search in Google Scholar

[32] Seffati K., et al. AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renew. Energy 2020:147:25–34. https://doi.org/10.1016/j.renene.2019.08.10510.1016/j.renene.2019.08.105 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo