Accès libre

PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings

À propos de cet article

Citez

[1] Pacheco-Torgal F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014:51:151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058 Search in Google Scholar

[2] Sinka M., Korjakins A., Bajare D., Zimele Z., Sahmenko G. Bio-based construction panels for low carbon development. Energy Procedia 2018:147:220–226. https://doi.org/10.1016/j.egypro.2018.07.063 Search in Google Scholar

[3] Le A. T., Gacoin A., Li A., Mai T. H., El Wakil N. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos. Part B Eng. 2015:75:201–211. https://doi.org/10.1016/j.compositesb.2015.01.038 Search in Google Scholar

[4] Bumanis G., Vitola L., Pundiene I., Sinka M., Bajare D. Gypsum, geopolymers, and starch-alternative binders for bio-based building materials: A review and life-cycle assessment. Sustain. 2020:12(14):5666. https://doi.org/10.3390/su12145666 Search in Google Scholar

[5] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011 Search in Google Scholar

[6] Maalouf C., Moussa T., Umurigirwa B. S., Mai T. H. Hygrothermal behavior of a hemp-starch composite for roof applications. Proceedings of 14th International Conference of IBPSA – Building Simulation 2015:618–625.10.26868/25222708.2015.2145 Search in Google Scholar

[7] Bardage S. L. Performance of buildings. Performance of Bio-based Building Materials 2017:335–383. https://doi.org/10.1016/B978-0-08-100982-6.00006-9 Search in Google Scholar

[8] Tyagi V. V., Kaushik S. C., Tyagi S. K., Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renewable and Sustainable Energy Reviews 2011:15(2):1373–1391. https://doi.org/10.1016/j.rser.2010.10.006 Search in Google Scholar

[9] Cabeza L. F., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007:39(2):113–119. https://doi.org/10.1016/j.enbuild.2006.03.030 Search in Google Scholar

[10] Schossig P., Henning H. M., Gschwander S., Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells 2005:89(2–3):297–306. https://doi.org/10.1016/j.solmat.2005.01.017 Search in Google Scholar

[11] Socaciu L., Pleşa A., Giurgiu O. Review on phase change materials for building applications. 2014. [Online]. [Accessed 14 March 2022]. Available: https://www.semanticscholar.org/paper/Review-on-phase-change-materials-for-building-Socaciu-Ple%C5%9Fa/3c17380902ea0187215f4bf18230a13459215592 Search in Google Scholar

[12] Koschenz M., Lehmann B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 2004:36(6):567–578. https://doi.org/10.1016/j.enbuild.2004.01.029 Search in Google Scholar

[13] Arce Maldonado P. Application of passive thermal energy storage in buildings using PCM and awnings. Chem. Eng. Sci. 2011:60(6):1535–1553. Search in Google Scholar

[14] Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025 Search in Google Scholar

[15] Kirilovs E., Zotova I., Gendelis S., Jörg-Gusovius H., Kukle S., Stramkale V. Experimental study of using micro-encapsulated phase-change material integrated into hemp shive wallboard. Buildings 2020:10(12):228. https://doi.org/10.3390/buildings10120228 Search in Google Scholar

[16] Stevulova N., Kidalova L., Cigasova J., Junak J., Sicakova A., Terpakova E. Lightweight composites containing hemp hurds. Procedia Engineering 2013:65:69–74. https://doi.org/10.1016/j.proeng.2013.09.013 Search in Google Scholar

[17] Shukla N., Kosny J. DHFMA Method for Dynamic Thermal Property Measurement of PCM-integrated Building Materials. Curr. Sustain. Renewable Energy Reports 2015:2(2):41–46. https://doi.org/10.1007/s40518-015-0025-x Search in Google Scholar

[18] Abdellatef Y., Khan M. A., Khan A., Alam M. I., Kavgic M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020:13(21):5000. https://doi.org/10.3390/ma13215000766418833171950 Search in Google Scholar

[19] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011 Search in Google Scholar

[20] Brzyski P., Gładecki M., Rumińska M., Pietrak K., Kubiś M., Łapka P. Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite. Materials (Basel). 2020:13(23):1–17. https://doi.org/10.3390/ma13235383773085833260830 Search in Google Scholar

[21] Manzello S. L., Park S.-H., Bentz D. P., Mizukami T. Measurement of Thermal Properties of Gypsum Board at Elevated Temperatures. Proceedings of the 5th International Conference on Structures in Fire 2004:656–665. Nanyang Technological University, Singapore. 2008. Search in Google Scholar

[22] Brewer P. G., Peltzer E. T. The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters. Geophys. Res. Lett. 2019:46(22):13227–13233. https://doi.org/10.1029/2019GL085117 Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other