Accès libre

Why Biopolymer Packaging Materials are Better

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus
À propos de cet article

Citez

[1] Ramos M., Valdes A., Beltran A., Garrigós M. Gelatin-based films and coatings for food packaging applications. Coatings 2016:6(4):41. doi:10.3390/coatings604004110.3390/coatings6040041Open DOISearch in Google Scholar

[2] Marsh K., Bugusu B. Food Packaging – Roles, Materials, and Environmental Issues. Journal of Food Science 2007:72(3):39–55. doi:10.1111/j.1750-3841.2007.00301.x10.1111/j.1750-3841.2007.00301.xOpen DOISearch in Google Scholar

[3] Zihare L., Blumberga D. Market Opportunities for Cellulose Products From Combined Renewable Resources. Environmental and Climate Technologies 2017:19(1):33–38. doi:10.1515/rtuect-2017-000310.1515/rtuect-2017-0003Open DOISearch in Google Scholar

[4] Ivankovic A., Zeljko K., Talic S., Martinovic Bevanda A., Lasic M. Biodegradable Packaging in the Food Industry. Journal of Food Safety and Food Quality 2017:68(2):23–52.Search in Google Scholar

[5] Gómez-Estaca J., Gavara R., Catalá R., Hernández-muñoz P. The Potential of Proteins for Producing Food Packaging Materials : A Review. Packaging Technology and Science 2016:29(4–5):203–224. doi:10.1002/pts.219810.1002/pts.2198Open DOISearch in Google Scholar

[6] Blunden S., Wallace T. Tin in canned food : a review and understanding of occurrence and effect. Food and Chemical Toxicology 2003:41(12):1651–1662. doi:10.1016/S0278-6915(03)00217-510.1016/S0278-6915(03)00217-5Open DOISearch in Google Scholar

[7] Zhou J., Liu S., Qi J., Zhang L. Structure and Properties of Composite Films Prepared from Cellulose and Nanocrystalline Titanium Dioxide Particles. Journal of Applied Polymer Science 2005:101(6):3600–3608. doi:10.1002/app.2265010.1002/app.22650Open DOISearch in Google Scholar

[8] ASTM C 1048. Standard Specification for Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass, 2004.Search in Google Scholar

[9] ASTM. Standard Test Methods for Water Vapor Transmission of Materials. ASTM Annual Book of ASTM Standards 2000:907–914.Search in Google Scholar

[10] RaheemD. Application of plastics and paper as food packaging materials – An overview. Emirates Journal of Food and Agriculture 2012:25(3):177–188. doi:10.9755/ejfa.v25i3.1150910.9755/ejfa.v25i3.11509Search in Google Scholar

[11] Cho B., Ryu J., Song B. Pilot Study on the Manufacture of Kraft Paper from OCC Pilot Study on the Manufacture of Kraft Paper from OCC. Journal of Korea Technical Association of the Pulp and Paper Industry 2008:40(5).Search in Google Scholar

[12] Tutus A., Karatas B., Cicekler M. Pulp and Paper Production from Hemp by Modified Kraft Method. Presented at the 1st International Mediterranian Science and Engineering Congress, Adana, Turkey, 2016.Search in Google Scholar

[13] Costa J. L., Legrand V., Freour S. Durability of Composite Materials under Severe Temperature Conditions : Influence of Moisture Content and Prediction of Thermo-Mechanical Properties During a Fire. Journal of Composites Science 2019:3:55. doi:10.3390/jcs302005510.3390/jcs3020055Open DOISearch in Google Scholar

[14] Raut I., et al. Comparative Study on the Behavior of Virgin and Recycled Polyolefins – Cellulose Composites in Natural Environmental Conditions. Journal of Composites Science 2019:3(2):60. doi:10.3390/jcs302006010.3390/jcs3020060Open DOISearch in Google Scholar

[15] Halden R. U. Plastics and Health Risks. Annual Review of Public Health 2010:31:179–194. doi:10.1146/annurev.publhealth.012809.10371410.1146/annurev.publhealth.012809.10371420070188Open DOISearch in Google Scholar

[16] Poustka J., et al. Acrylonitrile in Food Contact Materials – Two Different Legislative Approaches : Comparison of Direct Determination with Indirect Evaluation Using Migration into Food Simulants. Chezh Journal of Food Sciences 2007:25(5):265–271. doi:10.17221/678-CJFS10.17221/678-CJFSSearch in Google Scholar

[17] Tokiwa Y., et al. Biodegradability of Plastics. International Journal of Molecular Sciences 2009:10(9):3722–3742. doi:10.3390/ijms1009372210.3390/ijms10093722Open DOISearch in Google Scholar

[18] Almaadeed M. A., et al. Mechanical, sorption and adhesive properties of composites based on low-density polyethylene filled with date palm wood powder. Materials & Design 2014:53:29–37. doi:10.1016/j.matdes.2013.05.09310.1016/j.matdes.2013.05.093Open DOISearch in Google Scholar

[19] Gicevska J., Bazbauers G., Repele M. Ecodesign of Liquid Fuel Tanks. Environmental and Climate Technologies 2011:6(1):17–22. doi:10.2478/v10145-011-0002-610.2478/v10145-011-0002-6Open DOISearch in Google Scholar

[20] Sarker M., et al. Chemical Products Produced from High-Density Polyethylene ( HDPE ) Waste Plastic. International Journal of Material Science 2012:2(3):56–62.Search in Google Scholar

[21] Chen G., Patel M. K. Plastics Derived from Biological Sources : Present and Future: A Technical and Environmental Review. Chemical Reviews 2011:112(4):2082–2099. doi:10.1021/cr200162d10.1021/cr200162dOpen DOISearch in Google Scholar

[22] Hadad D., Geresh S., Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology 2005:98(5):1093–1100. doi:10.1111/j.1365-2672.2005.02553.x10.1111/j.1365-2672.2005.02553.xOpen DOISearch in Google Scholar

[23] Fabbri C., Bietti M., Lanzalunga O., Chimica D. Generation and Reactivity of Ketyl Radicals with Lignin Related Structures. On the Importance of the Ketyl Pathway in the Photoyellowing of Lignin Containing Pulps and Papers. Journal of Organic Chemistry 2005:70(7):2720–2728. doi:10.1021/jo047826u10.1021/jo047826uOpen DOISearch in Google Scholar

[24] Cazón P., et al. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids 2017:68:136–148. doi:10.1016/j.foodhyd.2016.09.00910.1016/j.foodhyd.2016.09.009Open DOISearch in Google Scholar

[25] Chua H., Yu P. H. F., Ma C. K. Accumulation of Biopolymers in Activated Sludge Biomass. Applied Biochemistry and Biotechnology1 1999:78(1–3):389–399. doi:10.1385/ABAB:78:1-3:38910.1385/ABAB:78:1-3:389Open DOISearch in Google Scholar

[26] Salgado P. R., Ortiz S. E. M., Petruccelli S., Mauri A. N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocolloids 2010:24(5):525–533. doi:10.1016/j.foodhyd.2009.12.00210.1016/j.foodhyd.2009.12.002Open DOISearch in Google Scholar

[27] Roy N., Saha N., Saha P. Biodegradable Hydrogel Film for Food Packaging Centre of Polymer Systems. Presented at the 4th WSEAS International Conference on Energy and Development, Corfu Island, Greece, 2011.Search in Google Scholar

[28] Quilter H. C., Hutchby M., Davidson M. G., Jones M. D. Polymerisation of a terpene-derived lactone: A bio-based alternative to ϵ-caprolactone. Polymer Chemistry 2017:5:833–837. doi:10.1039/C6PY02033J10.1039/C6PY02033JOpen DOISearch in Google Scholar

[29] Weber C. J. Biobased Packaging Materials for the Food Industry: Status and Perspectives. Food Science & Technology 2000:5:16–20.Search in Google Scholar

[30] Tutak D., Keskin B., Abubakr S., Fleming P. D. Water Vapor Permeability (Wvtr) Of Packaging Cartons In Water Vapor Permeability (Wvtr) Of Packaging Cartons in Extreme Hot. Presented at the 6th International Printing Technologies Symposium, Istanbul, Turkey, 2019.Search in Google Scholar

[31] Ponnambalam V., Poon S. J., Shiflet G. J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. Journal of Materials Research 2004:19(5):1320–1323. doi:10.1557/JMR.2004.017610.1557/JMR.2004.0176Open DOISearch in Google Scholar

[32] Elsabee M. Z., Abdou E. S. Chitosan-based edible films, and coatings : A review. Materials Science and Engineering: C 2013:33(4):1819–1841. doi:10.1016/j.msec.2013.01.010.10.1016/j.msec.2013.01.01023498203Open DOISearch in Google Scholar

[33] Benavides S., Villalobos-Carvajal R., Reyes J. E. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering 2012:110(2):232–39. doi:10.1016/j.jfoodeng.2011.05.02310.1016/j.jfoodeng.2011.05.023Open DOISearch in Google Scholar

[34] Pang J., et al. Fabrication of Cellulose Film with Enhanced Mechanical Properties in Ionic Liquid 1-Allyl-3-methylimidazolium Chloride (AmimCl). Materials 2013:26(6):1270–1284. doi:10.3390/ma604127010.3390/6041270Open DOISearch in Google Scholar

[35] Stirna U., Fridrihsone A., Misane M., Vilsone D. Rapeseed Oil as Renewable Resource for Polyol Synthesis. Environmental and Climate Technologies 2011:6(1):85–90. doi:10.2478/v10145-011-0012-410.2478/v10145-011-0012-4Open DOISearch in Google Scholar

[36] Priedniece V., Spalvins K., Ivanovs K., Pubule J., Blumberga D. Bioproducts from potatoes. A review. Environmental and Climate Technologies 2017:21(1):18–27. doi:10.1515/rtuect-2017-001310.1515/rtuect-2017-0013Open DOISearch in Google Scholar

[37] Nafchi A. M., Moradpour M., Saeidi M., Alias A. K. Thermoplastic starches: Properties, challenges, and prospects. Starch 2013:65(1–2):61–72. doi:10.1002/star.20120020110.1002/star.201200201Open DOISearch in Google Scholar

[38] Qi H., Chang C., Zhang L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry 2009:11(2):177–184. doi:10.1039/B814721C10.1039/B814721Open DOISearch in Google Scholar

[39] Erhardt D., Tumosa C. S. Chemical Degradation of Cellulose in Paper over 500 Years. Restaurator 2005:26(3):151–158. doi:10.1515/rest.2005.26.3.15110.1515/rest.2005.26.3.151Open DOISearch in Google Scholar

[40] Shatalov I., Shatalova A., Shleikin A. Developing Of Edible Packaging Material Based On Protein Film. Football 2014:298–301.Search in Google Scholar

[41] Popa S., Sorina B., Simulescu V. Collagen films obtained from collagen solutions characterized by rheology. Materiale Plastice 2017:54(2):359–361.10.37358/MP.17.2.4851Search in Google Scholar

[42] Abugoch L. E., et al. Food Hydrocolloids Characterization of quinoa protein chitosan blend edible films. Food Hydrocolloids 2011:25(5):879–886. doi:10.1016/j.foodhyd.2010.08.00810.1016/j.foodhyd.2010.08.008Open DOISearch in Google Scholar

[43] Rawdkuen S., Suthiluk P., Kamhangwong D., Benjakul S. Properties of gelatin-based film incorporated with catechin-lysozyme. Chemistry Central Journal 2012:6:131. doi:10.1186/1752-153X-6-13110.1186/1752-153X-6-131358579523134808Open DOISearch in Google Scholar

[44] Aider M. Chitosan application for active bio-based films production and potential in the food industry : Review. LWT – Food Science Technology 2010:43(6):837–842. doi:10.1016/j.lwt.2010.01.02110.1016/j.lwt.2010.01.021Open DOISearch in Google Scholar

[45] Muizniece I., Blumberga D. Thermal Conductivity of Heat Insulation Material Made from Coniferous Needles with Potato Starch Binder. Energy Procedia 2016:95:324–329. doi:10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014Open DOISearch in Google Scholar

[46] Krohling R. A., Pacheco A. G. C. A-TOPSIS – An approach based on TOPSIS for ranking evolutionary algorithms. Procedia Computer Science 2015:55:308–317. doi:10.1016/j.procs.2015.07.05410.1016/j.procs.2015.07.054Open DOISearch in Google Scholar

[47] Li P., Qian H., Wu J., Chen J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environmental Monitoring and Assessment 2012:185(3):2456–1461. doi:10.1007/s10661-012-2723-910.1007/s10661-012-2723-922752962Open DOISearch in Google Scholar

[48] Swain P. T. R., Biswas S. Selection of Materials Using Multi-Criteria Decision Making Method by Considering Physical and Mechanical Properties of Jute/Al2O3 Composites. Applied Mechanics and Materials 2014:592–594:729–733. doi:10.4028/www.scientific.net/AMM.592-594.72910.4028/www.scientific.net/AMM.592-594.729Open DOISearch in Google Scholar

[49] RISE. Roadmaps toward the future bioeconomy – the vital role of the forest industry. Stockholm: Research Institutes of Sweden, 2015.Search in Google Scholar

[50] Rawlings J. O., et al. Applied Regression Analysis: A Research Tool. New York: Springer, 1998.10.1007/b98890Search in Google Scholar

[51] Zavadskas E. K., et al. Development of TOPSIS method to solve complicated decision-making problems: An overview ofdevelopments from 2000 to 2015. International Journal of Information technology and Decision Making 2016. doi:10.1142/S021962201650017610.1142/S0219622016500176Open DOISearch in Google Scholar

[52] Vinodh S., Prasanna M., Prakash N. H. Integrated Fuzzy AHP – TOPSIS for selecting the best plastic recycling method : A case study. Applied Mathematical Modelling 2014:38(19–20):4662–4672. doi:10.1016/j.apm.2014.03.00710.1016/j.apm.2014.03.007Open DOISearch in Google Scholar

[53] Kaya T., Kahraman C. Expert Systems with Applications An integrated fuzzy AHP – ELECTRE methodology for environmental impact assessment. Expert Systems with Applications 2011:38(7):8553–8562. doi:10.1016/j.eswa.2011.01.05710.1016/j.eswa.2011.01.057Open DOISearch in Google Scholar

[54] Miranda G., Berna A., Mulet A. Dried-Fruit Storage: An Analysis of Package Headspace Atmosphere Changes. Foods 2019:8(2):56. doi:10.3390/foods802005610.3390/foods8020056640684330720722Open DOISearch in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other