Accès libre

Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand

À propos de cet article

Citez

[1] Asian Development Bank (ADB). Environment, Climate Change, and Disaster Risk Management. Manila: Asian Development Bank, 2014.Search in Google Scholar

[2] Thailand Development Research Institute (TDRI). Prioritizing Environmental Problems with Environmental Costs. Bangkok: Final report prepared the Thailand Health Fund.Search in Google Scholar

[3] Office of the National Economic and Social Development Board. National Income of Thailand. Bangkok: NESDB, 2015.Search in Google Scholar

[4] Sutthichaimethee P., et al. Environmental problems indicator under environmental modeling toward sustainable development. Global J Environ Sci Manage 2015:4(1):325-332. doi:10.7508/gjesm.2015.04.007Search in Google Scholar

[5] Sutthichaimethee P., Sawangdee Y. Model of Environmental Impact of Service Sectors to Promote Sustainable Development of Thailand. Ethics Sci Environ Polit 2016:16:11-17. doi:10.3354/esep00169Search in Google Scholar

[6] Sutthichaimethee P., Sawangdee Y. Model of Environmental Problems Priority Arising from the use of Environmental and Natural Resources in Machinery Sectors of Thailand. Environmental and Climate Technologies 2016:17:18-29. doi:10.3354/esep00169Search in Google Scholar

[7] Sutthichaimethee P., Ariyasajjakorn D. Forecasting Model of GHG Emission in Manufacturing Sectors of Thailand. Journal of Ecological Engineering 2017:18(1):18-24. doi:10.12911/22998993/64566Search in Google Scholar

[8] Sutthichaimethee P., Tanoamchard W. Carrying Capacity Model of Food Manufacturing Sectors for Sustainable Development from using Environmental and Natural Resources of Thailand. Journal of Ecological Engineering 2015:16(5):1-8. doi:10.12911/22998993/60447Search in Google Scholar

[9] Sutthichaimethee P., et al. Model of Environmental Problems Priority Arising From the Use of Environmental and Natural Resources in Construction Material Sectors of Thailand. Advanced Engineering Forum 2015:14:76-85. doi:10.4028/www.scientific.net/AEF.14.76Search in Google Scholar

[10] Jovanovic R., Sretenovic A., Zivkovic B. Ensemble of various neural networks for prediction of heating energy consumption. Energy Build 2015:94:189-99. doi:10.1016/j.enbuild.2015.02.052Search in Google Scholar

[11] Barak S., Dahooie J. H., Tichy T. Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick. Expert Syst Appl 2015:42:9221-35. doi:10.1016/j.eswa.2015.08.010Search in Google Scholar

[12] Azadeh A., Asadzadeh S., Saberi M., Nadimi V., Tajvidi A., Sheikalishahi M. A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behaviour analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE. Appl Energy 2011:88:3850-9. doi:10.1016/j.apenergy.2011.04.027Search in Google Scholar

[13] Sutthichaimethee P. Modeling Environmental Impact of Machinery Sectors to Promote Sustainable Development of Thailand. Journal of Ecological Engineering 2016:17(1):18-25. doi:10.1515/rtuect-2016-0003Search in Google Scholar

[14] Sutthichaimethee P., Sawangdee Y. Indicator of Environmental Problems of Agricultural Sectors under the Environmental Modeling. Journal of Ecological Engineering 2016:17(2):12-18. doi:10.12911/22998993/62280Search in Google Scholar

[15] Yu S., Wei Y.-M., Wang K. A PSO-GA optimal model to estimate primary energy demand of China. Energy Policy 2012:42:329-40. doi:10.1016/j.enpol.2011.11.090Search in Google Scholar

[16] Ciabattoni L., Grisostomi M., Ippoliti G., Longhi S. Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario. Energy 2014:74:359-67. doi:10.1016/j.energy.2014.06.100Search in Google Scholar

[17] Xie N.-M., Yuan C.-Q., Yang Y.-J. Forecasting China’s energy demand and selfsufficiency rate by grey forecasting model and Markov model. Int J Electr Power Energy Syst 2015:66:1-8. doi:10.1016/j.ijepes.2014.10.028Search in Google Scholar

[18] Kumar U., Jain V. K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010:35(4):1709-1716. doi:10.1016/j.energy.2009.12.021Search in Google Scholar

[19] Li C., Hu J.-W. A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting. Eng Appl Artif Intell 2012:25:295-308. doi:10.1016/j.engappai.2011.10.005Search in Google Scholar

[20] Pao H.-T., Fu H.-C., Tseng C.-L. Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 2012:40:400-409. doi:10.1016/j.energy.2012.01.037Search in Google Scholar

[21] Johansen S., Juselius K. Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bull. Econ. Stat. 1990:52:169-210. doi:10.1111/j.1468-0084.1990.mp52002003.xSearch in Google Scholar

[22] Sims C. A. Macroeconomics and Reality. Econometrica: Journal of the Econometric Society 1980:48:1-48.10.2307/1912017Search in Google Scholar

[23] Suganthi L., Iniyan S., Samuel A. Applications of fuzzy logic in renewable energy systems - a review. Renew Sustain Energy Rev 2015:48:585-607. doi:10.1016/j.rser.2015.04.037Search in Google Scholar

[24] Kavaklioglu K., Ceylan H., Ozturk H., Canyurt O. Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Convers Manage 2009:50:2719-27. doi:10.1016/j.enconman.2009.06.016.Search in Google Scholar

eISSN:
2255-8837
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other