[
1. Calvin K, Patel P, Clarke L, Asrar G, Bond-Lamberty B, Cui RY, et al. GCAM v5. 1: representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development. 2019;12(2):677-98. DOI: 10.5194/gmd-12-677-2019
]Ouvrir le DOISearch in Google Scholar
[
2. Campa III JA, Payne R, editors. The management of intractable bone pain: a clinician’s perspective. Seminars in nuclear medicine; 1992: Elsevier. DOI: 10.1016/S0001-2998(05)80151-5
]Ouvrir le DOISearch in Google Scholar
[
3. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA: A cancer Journal for Clinicians. 1999;49(1):8-31. DOI: 10.3322/canjclin.49.1.810200775
]Ouvrir le DOISearch in Google Scholar
[
4. Roodman GD. Advances in bone biology: the osteoclast. Endocrine reviews. 1996;17(4):308-32. DOI: 10.1210/er.17.4.308
]Ouvrir le DOISearch in Google Scholar
[
5. Yasuda H. Discovery of the RANKL/RANK/OPG system. Journal of Bone and Mineral Metabolism. 2021;39(1):2-11. DOI: 10.1007/s00774-020-01175-133389131
]Ouvrir le DOISearch in Google Scholar
[
6. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of bone and mineral metabolism. 2021;39(1):19-26. DOI: 10.1007/s00774-020-01162-633079279
]Ouvrir le DOISearch in Google Scholar
[
7. Lacey D, Timms E, Tan H-L, Kelley M, Dunstan C, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-76. DOI: 10.1016/S0092-8674(00)81569-X9568710
]Ouvrir le DOISearch in Google Scholar
[
8. Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S, Bouralexis S, et al. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research. 2000;15(4):640-9. DOI: 10.1359/jbmr.2000.15.4.64010780856
]Ouvrir le DOISearch in Google Scholar
[
9. Chirgwin JM, Guise TA. Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Critical Reviews™ in Eukaryotic Gene Expression. 2000;10(2). DOI: 10.1615/CritRevEukarGeneExpr.v10.i2.50
]Ouvrir le DOISearch in Google Scholar
[
10. de la Piedra C, Castro-Errecaborde N-A, Traba ML, Méndez-Dávila C, Garcıá-Moreno C, de Acuña LR, et al. Bone remodeling markers in the detection of bone metastases in prostate cancer. Clinica chimica acta. 2003;331(1-2):45-53. DOI: 10.1016/S0009-8981(03)00081-0
]Ouvrir le DOISearch in Google Scholar
[
11. Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, et al. Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. International journal of cancer. 2004;111(5):783-91. DOI: 10.1002/ijc.2031415252851
]Ouvrir le DOISearch in Google Scholar
[
12. Brasso K, Christensen IJ, Johansen JS, Teisner B, Garnero P, Price PA, et al. Prognostic value of PINP, bone alkaline phosphatase, CTX-I, and YKL-40 in patients with metastatic prostate carcinoma. The Prostate. 2006;66(5):503-13. DOI: 10.1002/pros.2031116372331
]Ouvrir le DOISearch in Google Scholar
[
13. Smith M, Coleman R, Klotz L, Pittman K, Milecki P, Ng S, et al. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: comparison of skeletal-related events and symptomatic skeletal events. Annals of Oncology. 2015;26(2):368-74. DOI: 10.1093/annonc/mdu519430437825425475
]Ouvrir le DOISearch in Google Scholar
[
14. Glass TR, Tangen CM, Crawford ED, Thompson I. Metastatic carcinoma of the prostate: identifying prognostic groups using recursive partitioning. The Journal of urology. 2003;169(1):164-9. DOI: 10.1016/S0022-5347(05)64059-1
]Ouvrir le DOISearch in Google Scholar
[
15. Koopmans N, De Jong I, Breeuwsma A, Van der Veer E. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. The Journal of urology. 2007;178(3):849-53. DOI: 10.1016/j.juro.2007.05.02917631330
]Ouvrir le DOISearch in Google Scholar
[
16. Polak-Jonkisz D, Zwolińska D, Bednorz R, Owczarek H, Szymańska A, Nahaczewska W. Procollagen I carboxyterminal propeptide (PICP) as a bone formation marker and carboxyterminal telopeptide of type I collagen (ICTP) as a bone degradation marker in children with chronic renal failure under conservative therapy. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2003;9(1):CR19-23.
]Search in Google Scholar
[
17. Thurairaja R, Iles RK, Jefferson K, McFarlane J, Persad R. Serum amino-terminal propeptide of type 1 procollagen (P1NP) in prostate cancer: a potential predictor of bone metastases and prognosticator for disease progression and survival. Urologia internationalis. 2006;76(1):67-71. DOI: 10.1159/00008973816401924
]Ouvrir le DOISearch in Google Scholar
[
18. De La Piedra C, Alcaraz A, Bellmunt J, Meseguer C, Gómez-Caamano A, Ribal MJ, et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. British journal of cancer. 2013;108(12):2565-72. DOI: 10.1038/bjc.2013.270369424923722472
]Ouvrir le DOISearch in Google Scholar
[
19. Aufderklamm S, Hennenlotter J, Rausch S, Bock C, Erne E, Schwentner C, et al. Oncological validation of bone turnover markers c-terminal telopeptide of type I collagen (1CTP) and peptides n-terminal propeptide of type I procollagen (P1NP) in patients with prostate cancer and bone metastases. Translational Andrology and Urology. 2021;10(10):4000. DOI: 10.21037/tau-20-1120857555934804842
]Ouvrir le DOISearch in Google Scholar
[
20. Chen P, Wang S, Cao C, Ye W, Wang M, Zhou C, et al. α-naphthoflavone-derived cytochrome P450 (CYP) 1B1 degraders specific for sensitizing CYP1B1-mediated drug resistance to prostate cancer DU145: Structure activity relationship. Bioorganic Chemistry. 2021;116:105295. DOI: 10.1016/j.bioorg.2021.10529534455300
]Ouvrir le DOISearch in Google Scholar
[
21. Wang Y, He X, Li C, Ma Y, Xue W, Hu B, et al. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. European Journal of Medicinal Chemistry. 2020;193:112235. DOI: 10.1016/j.ejmech.2020.11223532203789
]Ouvrir le DOISearch in Google Scholar
[
22. Kaushik R, Khan S, Sharma M, Hemalatha S, Mueed Z, Poddar NK. Role of Cytochrome P450 in Prostate Cancer and its Therapy. Current Enzyme Inhibition. 2020;16(1):63-73. DOI: 10.2174/1573408016666200218122044
]Ouvrir le DOISearch in Google Scholar
[
23. Wong SK, Mohamad N-V, Giaze TR, Chin K-Y, Mohamed N, Ima-Nirwana S. Prostate cancer and bone metastases: the underlying mechanisms. International journal of molecular sciences. 2019;20(10):2587. DOI: 10.3390/ijms20102587
]Ouvrir le DOISearch in Google Scholar
[
24. Kanis JA, McCloskey EV. Bone turnover and biochemical markers in malignancy. Cancer: Interdisciplinary International Journal of the American Cancer Society. 1997;80(S8):1538-45. DOI: 10.1002/(SICI)1097-0142(19971015)80:8+<1538::AID-CNCR3>3.0.CO;2-G
]Ouvrir le DOISearch in Google Scholar
[
25. Koizumi M, Yonese J, Fukui I, Ogata E. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU international. 2001;87(4):348-51. DOI: 10.1046/j.1464-410x.2001.00105.x
]Ouvrir le DOISearch in Google Scholar
[
26. Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer research. 2002;62(6):1619-23.
]Search in Google Scholar
[
27. Wang Y, Liu Y, Huang Z, Chen X, Zhang B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discovery. 2022;8(1):1-9. DOI: 10.1038/s41420-022-01042-0
]Ouvrir le DOISearch in Google Scholar
[
28. Anselmino N, Starbuck M, Labanca E, Cotignola J, Navone N, Gueron G, et al. Heme oxygenase-1 is a pivotal modulator of bone turnover and remodeling: molecular implications for prostate cancer bone metastasis. Antioxidants & redox signaling. 2020;32(17):1243-58. DOI: 10.1089/ars.2019.7879
]Ouvrir le DOISearch in Google Scholar
[
29. Brown JM, Vessella RL, Kostenuik PJ, Dunstan CR, Lange PH, Corey E. Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clinical cancer research. 2001;7(10):2977-83.
]Search in Google Scholar
[
30. Jung K, Lein M, von Hosslin K, Brux B, Schnorr D, Loening SA, et al. Osteoprotegerin in serum as a novel marker of bone metastatic spread in prostate cancer. Clinical chemistry. 2001;47(11):2061-3. DOI: 10.1093/clinchem/47.11.2061
]Ouvrir le DOISearch in Google Scholar
[
31. Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, et al. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-β (TGF-β): Mapping of the OPG promoter region that mediates TGF-β effects. Journal of Biological Chemistry. 2001;276(39):36241-50. DOI: 10.1074/jbc.M104319200
]Ouvrir le DOISearch in Google Scholar
[
32. Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 2000;141(9):3478-84. DOI: 10.1210/endo.141.9.7634
]Ouvrir le DOISearch in Google Scholar
[
33. Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proceedings of the national academy of sciences. 2000;97(4):1566-71. DOI: 10.1073/pnas.97.4.1566
]Ouvrir le DOISearch in Google Scholar
[
34. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. International Journal of Molecular Sciences. 2020;21(12):4449. DOI: 10.3390/ijms21124449735220332585812
]Ouvrir le DOISearch in Google Scholar
[
35. Ulsperger E, Hamilton G, Raderer M, Baumgartner G, Hejna M, Hoffmann O, et al. Resveratrol pretreatment desensitizes AHTO-7 human osteoblasts to growth stimulation in response to carcinoma cell supernatants. International journal of oncology. 1999;15(5):955-64. DOI: 10.3892/ijo.15.5.95510536179
]Ouvrir le DOISearch in Google Scholar
[
36. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679-91. DOI: 10.1038/sj.onc.120937716550168
]Ouvrir le DOISearch in Google Scholar
[
37. Li Y, Chen S, Zhu J, Zheng C, Wu M, Xue L, et al. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochemical and Biophysical Research Communications. 2022;589:85-91. DOI: 10.1016/j.bbrc.2021.12.00734896780
]Ouvrir le DOISearch in Google Scholar
[
38. Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Current drug targets. 2018;19(1):38-54. DOI: 10.2174/138945011866617012514455728124606
]Ouvrir le DOISearch in Google Scholar
[
39. Yan T, Lu L, Xie C, Chen J, Peng X, Zhu L, et al. Severely Impaired and Dysregulated Cytochrome P450 Expression and Activities in Hepatocellular Carcinoma: Implications for Personalized Treatment in PatientsSeverely Impaired and Dysregulated Activities of CYPs in HCC. Molecular cancer therapeutics. 2015;14(12):2874-86. DOI: 10.1158/1535-7163.MCT-15-0274467438026516155
]Ouvrir le DOISearch in Google Scholar
[
40. Ye L, Yang X, Guo E, Chen W, Lu L, Wang Y, et al. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PloS one. 2014;9(5):e96664. DOI: 10.1371/journal.pone.0096664401053224797816
]Ouvrir le DOISearch in Google Scholar
[
41. Horas K, Seibel MJ. Bone remodeling markers and bone cancer. Bone Sarcomas and Bone Metastases-From Bench to Bedside: Elsevier; 2022. p. 413-29. DOI: 10.1016/B978-0-12-821666-8.00037-2
]Ouvrir le DOISearch in Google Scholar
[
42. Merlo P, Rochlitz C, Osthoff M. The Alkaline Phosphatase Flare Phenomenon: A Transient Substantial Increase in Alkaline Phosphatase Concentration in a Prostate Cancer Patient after Starting GnRH Agonist Treatment. Case Reports in Oncology. 2021;14(1):73-7. DOI: 10.1159/000513427798361933776685
]Ouvrir le DOISearch in Google Scholar
[
43. Alexandrakis MG, Passam FH, Malliaraki N, Katachanakis C, Kyriakou DS, Margioris AN. Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients. Clinica Chimica Acta. 2002;325(1-2):51-7. DOI: 10.1016/S0009-8981(02)00246-212367766
]Ouvrir le DOISearch in Google Scholar
[
44. Velletri T, Huang Y, Wang Y, Li Q, Hu M, Xie N, et al. Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin. Cell Death & Differentiation. 2021;28(1):156-69. DOI: 10.1038/s41418-020-0590-4785312632694652
]Ouvrir le DOISearch in Google Scholar
[
45. Akoto T, Saini S. Role of exosomes in prostate cancer metastasis. International journal of molecular sciences. 2021;22(7):3528. DOI: 10.3390/ijms22073528803638133805398
]Ouvrir le DOISearch in Google Scholar
[
46. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: Potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2001;92(3):460-70. DOI: 10.1002/1097-0142(20010801)92:3<460::AIDCNCR1344>3.0.CO;2-D
]Ouvrir le DOISearch in Google Scholar
[
47. Zhang J, Dai J, Qi Y, Lin D-L, Smith P, Strayhorn C, et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. The Journal of clinical investigation. 2001;107(10):1235-44. DOI: 10.1172/JCI11685
]Ouvrir le DOISearch in Google Scholar
[
48. Eaton CL, Wells JM, Holen I, Croucher PI, Hamdy FC. Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. The Prostate. 2004;59(3):304-10. DOI: 10.1002/pros.20016
]Ouvrir le DOISearch in Google Scholar
[
49. Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis. Molecules. 2021;26(2):384. DOI: 10.3390/molecules26020384
]Ouvrir le DOISearch in Google Scholar
[
50. Phillips J, Eaton C, Proctor L, Sokhi D, Hannon R, Cross N, et al. 506 CAN SERUM OSTEOPROTEGERIN LEVELS PREDICT BIOCHEMICAL FAILURE IN PROSTATE CANCER? European Urology Supplements. 2007;2(6):149. DOI: 10.1016/S1569-9056(07)60504-1
]Ouvrir le DOISearch in Google Scholar
[
51. Kamiya N, Suzuki H, Endo T, Takano M, Yano M, Naoi M, et al. Significance of serum osteoprotegerin and receptor activator of nuclear factor κB ligand in Japanese prostate cancer patients with bone metastasis. International journal of clinical oncology. 2011;16(4):366-72. DOI: 10.1007/s10147-011-0193-7
]Ouvrir le DOISearch in Google Scholar
[
52. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670-91. DOI: 10.1016/j.cell.2016.11.037
]Ouvrir le DOISearch in Google Scholar
[
53. Sharma M, McCarthy ET, Reddy DS, Patel PK, Savin VJ, Medhora M, et al. 8, 9-Epoxyeicosatrienoic acid protects the glomerular filtration barrier. Prostaglandins & other lipid mediators. 2009;89(1-2):43-51. DOI: 10.1016/j.prostaglandins.2009.04.004
]Ouvrir le DOISearch in Google Scholar
[
54. Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer and Metastasis Reviews. 2018;37(2):409-23. DOI: 10.1007/s10555-018-9749-630066055
]Ouvrir le DOISearch in Google Scholar
[
55. Guo Z, Norris B, Henriksen J, Morgan M, Maher M, Schumacher R, et al. CYP3A4 promotes mammary carcinoma angiogenesis in a cell iIntrinsic fashion. Cancer Research. 2013;73(8_Supplement):82-. DOI: 10.1158/1538-7445.AM2013-82
]Ouvrir le DOISearch in Google Scholar
[
56. Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14, 15-epoxyeicosatrienoic acid (EET). Journal of Biological Chemistry. 2011;286(20):17543-59. DOI: 10.1074/jbc.M110.198515309382921402692
]Ouvrir le DOISearch in Google Scholar
[
57. Baker SG. The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. Journal of the National Cancer Institute. 2003;95(7):511-5. DOI: 10.1093/jnci/95.7.51112671018
]Ouvrir le DOISearch in Google Scholar
[
58. Henderson CM, Fantuzzo JW. Challenging the Core Assumption of Chronic Absenteeism: Are Excused and Unexcused Absences Equally Useful in Determining Academic Risk Status? Journal of Education for Students Placed at Risk (JESPAR). 2022:1-35. DOI: 10.1080/10824669.2022.2065636
]Ouvrir le DOISearch in Google Scholar