1. bookVolume 30 (2022): Edition 3 (July 2022)
Détails du magazine
License
Format
Magazine
eISSN
2284-5623
Première parution
08 Aug 2013
Périodicité
4 fois par an
Langues
Anglais
Accès libre

SPP1 is a biomarker of cervical cancer prognosis and involved in immune infiltration

Publié en ligne: 18 Jul 2022
Volume & Edition: Volume 30 (2022) - Edition 3 (July 2022)
Pages: 281 - 292
Reçu: 23 Jan 2022
Accepté: 03 Jun 2022
Détails du magazine
License
Format
Magazine
eISSN
2284-5623
Première parution
08 Aug 2013
Périodicité
4 fois par an
Langues
Anglais
Abstract

Background: Cervical cancer is the fourth commonly occurred cancer in women around the world. However, it still lacks effective approaches to improve current prognosis of cervical cancer and prevent metastasis.

Objective: We aim to discover a promising biomarker for cervical cancer prognosis by utilizing bioinformatics analysis.

Methods: Gene expression was analyzed by the datasets from The Cancer Genome Atlas Program-Cervical squamous cell carcinoma and endocervical adenocarcinoma (TCGA-CESC) dataset and three independent patient cohort datasets. Biological process and pathway enrichment were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Immune infiltration was analyzed through TISIDB tool.

Results: SPP1 gene was highly expressed in cervical cancer tissues. In addition, SPP1 was positively correlated to advanced CESC stages and nodal metastasis status. SPP1 co-expressed genes are mainly enriched in immunological processes. Furthermore, SPP1 expression is involved in immune infiltration level, in which several tumour infiltrating lymphocytes are correlated with SPP1. SPP1 overexpression promotes a wide spectrum of chemokines and immunoinhibiors which contribute to CESC progression.

Conclusions: SPP1 is a promising biomarker and a prognostic factor of CESC. Tumour infiltrating lymphocytes are also possibly regulated by SPP1. Our study suggests that investigation on SPP1 is a new direction for CESC therapy.

Keywords

1. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med. 2018;7(10):5217-36. DOI: 10.1002/cam4.1501 Ouvrir le DOISearch in Google Scholar

2. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890-907. DOI: 10.1016/S0140-6736(07)61416-0 Ouvrir le DOISearch in Google Scholar

3. Lang-Schwarz C, Melcher B, Haumaier F, Lang-Schwarz K, Rupprecht T, Vieth M, et al. Budding and tumor-infiltrating lymphocytes - combination of both parameters predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum Pathol. 2018;79:160-7. DOI: 10.1016/j.humpath.2018.05.01029787819 Ouvrir le DOISearch in Google Scholar

4. Adams S, Goldstein LJ, Sparano JA, Demaria S, Badve SS. Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology. 2015;4(9):e985930. DOI: 10.4161/2162402X.2014.985930457011226405612 Ouvrir le DOISearch in Google Scholar

5. Ikeda Y, Kiyotani K, Yew PY, Sato S, Imai Y, Yamaguchi R, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer. Oncol Rep. 2017;37(5):2603-10. DOI: 10.3892/or.2017.5536542828528358435 Ouvrir le DOISearch in Google Scholar

6. Ohno A, Iwata T, Katoh Y, Taniguchi S, Tanaka K, Nishio H, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. Gynecol Oncol. 2020;159(2):329-34. DOI: 10.1016/j.ygy-no.2020.07.106 Ouvrir le DOISearch in Google Scholar

7. Wu MY, Kuo TY, Ho HN. Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 2011;110(9):580-6. DOI: 10.1016/j.jfma.2011.07.00521930068 Ouvrir le DOISearch in Google Scholar

8. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res. 2018;122(12):1661-74. DOI: 10.1161/CIRCRESAHA.117.31250929545365 Ouvrir le DOISearch in Google Scholar

9. Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 2017;91:1167-77. DOI: 10.1016/j.biopha.2017.05.05628531945 Ouvrir le DOISearch in Google Scholar

10. Hao C, Cui Y, Hu MU, Zhi X, Zhang L, Li W, et al. OPN-a Splicing Variant Expression in Non-small Cell Lung Cancer and its Effects on the Bone Metastatic Abilities of Lung Cancer Cells In Vitro. Anticancer Res. 2017;37(5):2245-54. DOI: 10.21873/anticanres.1156128476789 Ouvrir le DOISearch in Google Scholar

11. Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via Integrin beta1/FAK/AKT signaling pathway. Onco Targets Ther. 2018;11:1333-43. DOI: 10.2147/OTT.S154215585606329559792 Ouvrir le DOISearch in Google Scholar

12. Gothlin Eremo A, Lagergren K, Othman L, Montgomery S, Andersson G, Tina E. Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Sci Rep. 2020;10(1):1451. DOI: 10.1038/s41598-020-58323-w698962931996744 Ouvrir le DOISearch in Google Scholar

13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W14. DOI: 10.1093/nar/gkaa407731957532442275 Ouvrir le DOISearch in Google Scholar

14. Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med. 2019;23(1):59-69. DOI: 10.1111/jcmm.13953630784430394682 Ouvrir le DOISearch in Google Scholar

15. Su J, Su L, Li D, Shuai O, Zhang Y, Liang H, et al. Antitumor Activity of Extract From the Sporoderm-Breaking Spore of Ganoderma lucidum: Restoration on Exhausted Cytotoxic T Cell With Gut Microbiota Remodeling. Front Immunol. 2018;9:1765. DOI: 10.3389/fimmu.2018.01765607921730108589 Ouvrir le DOISearch in Google Scholar

16. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294-307. DOI: 10.1038/s41577-019-0257-x31988391 Ouvrir le DOISearch in Google Scholar

17. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717-27. DOI: 10.1016/j.ejca.2006.01.00316520032 Ouvrir le DOISearch in Google Scholar

18. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66(11):5527-36. DOI: 10.1158/0008-5472.CAN-05-412816740684 Ouvrir le DOISearch in Google Scholar

19. Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci. 2020;21(21):7820. DOI: 10.3390/ijms21217820765993733105656 Ouvrir le DOISearch in Google Scholar

20. Kong W, Zhao G, Chen H, Wang W, Shang X, Sun Q, et al. Analysis of therapeutic targets and prognostic biomarkers of CXC chemokines in cervical cancer microenvironment. Cancer Cell Int. 2021;21(1):399. DOI: 10.1186/s12935-021-02101-9831741534321012 Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo