1. bookVolume 29 (2021): Edition 4 (October 2021)
Détails du magazine
License
Format
Magazine
eISSN
2284-5623
Première parution
08 Aug 2013
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Circulating amino acids as fingerprints of visceral adipose tissue independent of insulin resistance: a targeted metabolomic research in women

Publié en ligne: 22 Oct 2021
Volume & Edition: Volume 29 (2021) - Edition 4 (October 2021)
Pages: 439 - 451
Reçu: 10 Sep 2021
Accepté: 05 Oct 2021
Détails du magazine
License
Format
Magazine
eISSN
2284-5623
Première parution
08 Aug 2013
Périodicité
4 fois par an
Langues
Anglais
Abstract

Introduction: Although obesity and its biomarkers have been intensively studied, little is known about the metabolomic signature of visceral adiposity independent of insulin resistance that frequently accompanies increased levels of visceral fat. Our study aimed to investigate specific changes in amino acid (AA) levels as biomarkers of increased visceral adiposity independent of insulin resistance, in healthy subjects.

Methods: Forty-two adult women were included in this cross-sectional study. Serum samples were analyzed by AAs targeted metabolomics according to their visceral fat area (<100 cm2 and ≥100 cm2).

Results: By corrected t-test and supervised partial least-squares discriminant analysis (PLS-DA) we identified 4 AAs that were significantly higher in the group with higher visceral fat: proline (variable importance in the projection [VIP] predicted value: 1.97), tyrosine (VIP: 2.21), cysteine (VIP: 1.19), isoleucine (VIP: 1.04; p-values <0.05). Also, glycine was significantly lower in the group with higher visceral fat (VIP: 1.65; p-value <0.05). All AAs identified were associated with visceral fat independent of homeo-static model assessment for insulin resistance (p-value for regression coefficients <0.05).

Conclusion: Metabolic pathways that might be disrupted in persons with increased visceral fat are phenylalanine, tyrosine, and tryptophan biosynthesis; tyrosine metabolism; glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism.

Keywords

1. World Health Organization. Obesity and overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed on 7 August 2021). Search in Google Scholar

2. Ard JD. Obesity. In: Heimburger DC, Ard JD (Eds). Handbook of Clinical Nutrition, 4th ed. Mosby, 2006, pp. 371-400. DOI: 10.1016/B978-0-323-03952-9.50023-410.1016/B978-0-323-03952-9.50023-4 Search in Google Scholar

3. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007 Jul;116(1):39-48. DOI: 10.1161/CIRCULATIONAHA.106.67535510.1161/CIRCULATIONAHA.106.67535517576866 Search in Google Scholar

4. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross, R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006 Feb;14(2):336-41. DOI: 10.1038/ oby.2006.4310.1038/oby.2006.4316571861 Search in Google Scholar

5. Piché ME, Tchernof A, Després JP. Obesity Pheno-types, Diabetes, and Cardiovascular Diseases. Circ Res. 2020 May;126(11):1477-500. DOI: 10.1161/CIRCRESAHA.120.31610110.1161/CIRCRESAHA.120.31610132437302 Search in Google Scholar

6. Purnell JQ. Definitions, Classification, and Epidemiology of Obesity. In: Purnell J, Laferrere B (Eds.); Obesity. https://www.endotext.org/section/obesity/. (accessed August, 30 2021). DOI: 10.2310/IM.105110.2310/IM.1051 Search in Google Scholar

7. Neeland IJ, Boone SC, Mook-Kanamori DO, Ayers C, Smit RAJ, Tzoulaki I, et al. Metabolomics Profiling of Visceral Adipose Tissue: Results From MESA and the NEO Study. J Am Heart Assoc. 2019 May;8(9):e010810. DOI: 10.1161/JAHA.118.01081010.1161/JAHA.118.010810651208631017036 Search in Google Scholar

8. Libert DM, Nowacki AS, Natowicz MR. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ. 2018 Aug;6:e5410. DOI: 10.7717/peerj.541010.7717/peerj.5410612044330186675 Search in Google Scholar

9. Cernea S, Both E, Fodor A. The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus. Rev Romana Med Lab. 2020;28(3):299-314. DOI:10.2478/ rrlm-2020-002810.2478/rrlm-2020-0028 Search in Google Scholar

10. Piro MC, Tesauro M, Lena AM, Gentileschi P, Sica G, Rodia G, et al. Free-amino acid metabolic profiling of visceral adipose tissue from obese subjects. Amino Acids. 2020 Aug;52(8):1125-37. DOI: 10.1007/s00726-020-02877-610.1007/s00726-020-02877-632757125 Search in Google Scholar

11. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010 Dec;5(12):e15234. DOI: 10.1371/journal. pone.0015234 Search in Google Scholar

12. Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013 Mar;36(3):648-55. DOI: 10.2337/dc12-089510.2337/dc12-0895357933123129134 Search in Google Scholar

13. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, et al. The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc. 2012 Nov;71(4):634-8. DOI: 10.1017/ S002966511200069910.1017/S002966511200069922863201 Search in Google Scholar

14. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. DOI: 10.1152/ajpendo.00134.200710.1152/ajpendo.00134.2007276720117925455 Search in Google Scholar

15. Geidenstam N, Magnusson M, Danielsson APH, Gerszten RE, Wang TJ, Reinius LE, et al. Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss. Int J Endocrinol. 2017;2017:6490473. DOI: 10.1155/2017/649047310.1155/2017/6490473541213828484491 Search in Google Scholar

16. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res. 2013 Jan;41:D801-7. DOI: 10.1093/nar/gks106510.1093/nar/gks1065353120023161693 Search in Google Scholar

17. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412-9. DOI: 10.1007/BF0028088310.1007/BF002808833899825 Search in Google Scholar

18. Bala CG, Rusu A, Ciobanu D, Bucsa C, Roman G. Amino Acid Signature of Oxidative Stress in Patients with Type 2 Diabetes: Targeted Exploratory Metabolomic Research. Antioxidants (Basel). 2021 Apr;10(4):610. DOI: 10.3390/antiox1004061010.3390/antiox10040610807155333921149 Search in Google Scholar

19. Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, et al. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep. 2016 Jul;6:30785. DOI: 10.1038/srep3078510.1038/srep30785496576327470195 Search in Google Scholar

20. Lustgarten MS, Price LL, Phillips EM, Fielding RA. Serum glycine is associated with regional body fat and insulin resistance in functionally-limited older adults. PLoS One. 2013 Dec;8(12):e84034. DOI: 10.1371/ journal.pone.008403410.1371/journal.pone.0084034387714424391874 Search in Google Scholar

21. Boulet MM, Chevrier G, Grenier-Larouche T, Pelletier M, Nadeau M, Scarpa J, et al. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am J Physiol Endocrinol Metab. 2015 Oct;309(8):E736-46. DOI: 10.1152/ajpendo.00231.201510.1152/ajpendo.00231.201526306599 Search in Google Scholar

22. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women. PLoS One. 2013 Sep;8(9):e73445. DOI: 10.1371/journal.pone.007344510.1371/journal.pone.0073445377064024039943 Search in Google Scholar

23. Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, Tani M, et al. Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes. 2012 Feb;2(1-2):29-40. DOI: 10.1111/j.1758-8111.2012.00039.x10.1111/j.1758-8111.2012.00039.x Search in Google Scholar

24. Papandreou C, García-Gavilán J, Camacho-Barcia L, Hansen TT, Sjödin A, Harrold JA, et al. Circulating Metabolites Associated with Body Fat and Lean Mass in Adults with Overweight/Obesity. Metabolites. 2021 May;11(5):317. DOI: 10.3390/metabo1105031710.3390/metabo11050317 Search in Google Scholar

25. Flores-Guerrero JL, Osté MCJ, Kieneker LM, Gruppen EG, Wolak-Dinsmore J, Otvos JD, et al. Plasma Branched-Chain Amino Acids and Risk of Incident Type 2 Diabetes: Results from the PREVEND Prospective Cohort Study. J Clin Med. 2018 Dec;7(12):513. DOI: 10.3390/jcm712051310.3390/jcm7120513 Search in Google Scholar

26. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ Genom Precis Med. 2018 Apr;11(4):e002157. DOI: 10.1161/CIRCGEN.118.00215710.1161/CIRCGEN.118.002157 Search in Google Scholar

27. Yang P, Hu W, Fu Z, Sun L, Zhou Y, Gong Y, et al. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population. Lipids Health Dis. 2016 Jul;15:120. DOI: 10.1186/ s12944-016-0291-710.1186/s12944-016-0291-7 Search in Google Scholar

28. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012 Aug;126(9):1110-20. DOI: 10.1161/CIRCULATION-AHA.111.060368 Search in Google Scholar

29. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B, et al. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J Diabetes Res. 2016;2016:2108909. DOI: 10.1155/2016/210890910.1155/2016/2108909 Search in Google Scholar

30. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011 Apr;17(4):448-53. DOI: 10.1038/nm.230710.1038/nm.2307 Search in Google Scholar

31. El Hafidi M, Pérez I, Zamora J, Soto V, Carvajal-Sandoval G, Ba-os G. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol. 2004 Dec;287(6):R1387-93. DOI: 10.1152/ ajpregu.00159.200410.1152/ajpregu.00159.2004 Search in Google Scholar

32. Alvarado-Vásquez N, Zamudio P, Cerón E, Vanda B, Zenteno E, Carvajal-Sandoval G. Effect of glycine in streptozotocin-induced diabetic rats. Comp. Biochem. Physiol. C. Comp Biochem Physiol C Toxicol Pharmacol. 2003 Apr;134(4):521-7. DOI: 10.1016/S1532-0456(03)00046-210.1016/S1532-0456(03)00046-2 Search in Google Scholar

33. Gannon MC, Nuttall JA, Nuttall FQ. The metabolic response to ingested glycine. Am J Clin Nutr. 2002 Dec;76(6):1302-7. DOI: 10.1093/ajcn/76.6.130210.1093/ajcn/76.6.130212450897 Search in Google Scholar

34. Cruz M, Maldonado-Bernal C, Mondragón-Gonzalez R, Sanchez-Barrera R, Wacher NH, Carvajal-Sandoval G, et al. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. J Endocrinol Invest. 2008 Aug;31(8):694-9. DOI: 10.1007/BF0334641710.1007/BF03346417 Search in Google Scholar

35. Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011 Jan;34(1):162-7. DOI: 10.2337/dc10-100610.2337/dc10-1006 Search in Google Scholar

36. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013 Jun;304(11):E1175-87. DOI: 10.1152/ajpendo.00630.201210.1152/ajpendo.00630.2012 Search in Google Scholar

37. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1552-63. DOI: 10.1152/ajpendo.00134.200710.1152/ajpendo.00134.2007 Search in Google Scholar

38. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010 Apr;285(15):11348-56. DOI: 10.1074/jbc. M109.07518410.1074/jbc Search in Google Scholar

39. Pietiläinen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keränen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008 Mar;5(3):e51. DOI: 10.1371/journal.pmed.005005110.1371/journal.pmed.0050051 Search in Google Scholar

40. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, et al. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998 Mar;24(5):699-704. DOI: 10.1016/S0891-5849(97)00286-410.1016/S0891-5849(97)00286-4 Search in Google Scholar

41. Candi E, Tesauro M, Cardillo C, Lena AM, Schinzari F, Rodia G, et al. Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome. Biochem J. 2018 Mar;475(5):1019-35. DOI: 10.1042/BCJ2017060410.1042/BCJ2017060429437994 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo