À propos de cet article

Citez

[1] KALRA, A., GUPTA, A. 2020. Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Materials Today: Proceedings, 36, 689–696, ISSN 2214-7853. Search in Google Scholar

[2] GUNASUNDARI, E., SENTHIL KUMAR, P., RAJAMOHAN, N., VELLAICHAMY, P. 2020. Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalination and Water Treatment, 192, 358–370, ISSN 1944-3986. Search in Google Scholar

[3] PANDA, S. K., AGGARWAL, I., KUMAR, H., et al. 2021. Magnetite nanoparticles as sorbents for dye removal: a review. Environmental Chemistry Letters, ISNN 1610-3653. Search in Google Scholar

[4] RIAHI-MADVAAR, R., TAHER, FAZELIRAD, H. 2017. Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal. Applied Clay Science, 137, 101–106. ISSN 0169-1317. Search in Google Scholar

[5] ALI, A. A., EL-SAYED, S. R., SHAMA, S. A., MOHAMED, T. Y., AMIN, A. S. 2020. Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green b dye. Desalination Water Treatment, 204, 124–135. ISSN 19443986. Search in Google Scholar

[6] NITHYA, R., THIRUNAVUKKARASU, A., SATHYA, A. B., SIVASHANKAR, R. 2021. Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environmental Chemistry Letters. ISSN 1610-3653.10.1007/s10311-020-01149-9 Search in Google Scholar

[7] ZHOU, Y., LU, J., ZHOU Y., LIU, Y. 2019. Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365, ISSN 1873-6424. Search in Google Scholar

[8] BUSHRA, R., MOHAMAD, S., ALIAS, Y., JIN, Y., AHMAD, M. 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous Mesoporous Materials, 111040. ISSN 1387-1811. Search in Google Scholar

[9] ZIARANI, G. M., MORADI, R., LASHGARI, N., KRUGER, H. G. 2018. Azo Dyes. Metal-Free Synthetic Organic Dyes, Elsevier, 2018. 47–93 p. ISBN 9780128156476. Search in Google Scholar

[10] NEUGEBAUER, W., SESSA, C., STEUER, C., ALLSCHER, T., STEGE, H. 2019. Naphthol Green – a forgotten artists’ pigment of the early 20th century. History, chemistry and analytical identification. Journal of Cultural Heritage, 36, 153–165. ISSN 12962074. Search in Google Scholar

[11] HUNG. Y.-T., ADESANMI, BUKOLA M., PAUL, H. H. 2020. Coagulation-Flocculation Treatment for Naphthol Green Band Flour Wastewater. International Journal for Modern Trends in Science and Technology, 6 (12), 190–197. ISSN 2455-3778. Search in Google Scholar

[12] CHENAB, K. K., SOHRABI, B., JAFARI, A., RAMAKRISHNA, S. 2020. Water treatment: functional nanomaterials and applications from adsorption to photodegradation. Materials Today Chemistry, 16, 100262. ISSN 24685194. Search in Google Scholar

[13] AHMADI, N., CHAIBAKHSH, N., ZANJANCHI, M.A. 2016. Use of Descurainia sophia L. As a natural coagulant for the treatment of dye-containing wastewater. Environmental Progress & Sustainable Energy, 35 (4), 996–1001. ISSN 19447442. Search in Google Scholar

[14] NOURMORADI H., RAHMATI Z., JAVAHERI M., MORADNEJADI K. 2015. Effect of praestol as a coagulant-aid to improve coagulation-flocculation in dye containing wastewaters. Global Nest Journal, 18(1), 38–46. Search in Google Scholar

[15] BUTLER, E.B., HUNG, Y.T., MULAMBA, O. 2017. The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM). Applied Water Science, 7 (5), 2357-2371. ISSN 2190-5487. Search in Google Scholar

[16] YUKSEL, E., GURBULAK, E., EYVAZ, M. 2012. Decolorization of a Reactive Dye Solution and Treatment of a Textile Wastewater by Electrocoagulation and Chemical Coagulation: Techno-Economic Comparison. Environmental Progress & Sustainable Energy, 31(4), 524–535. ISSN 19447442. Search in Google Scholar

[17] LALNUNHLIMI, S., VEENAGAYATHRI, K. 2016. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of Microbiology, 47(1), 39–46, ISSN 15178382. Search in Google Scholar

[18] LOU, Z., ZHOU, Z., ZHANG, W., ZHANG, X., HU, X., LIU, P.,ZHANG, H. 2015. Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: Synthesis, characterization, mechanism, kinetics and regeneration. Journal of the Taiwan Institute of Chemical Engineers, 49, 199-205. ISSN 18761070. Search in Google Scholar

[19] DE GISI, S., LOFRANO, G., GRASSI, M., NOTARNICOLA, M. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9,10-40, ISSN 22149937. Search in Google Scholar

[20] SIVASHANKAR, R., SATHYA, A. B., VASANTHARAJ, K., SIVASUBRAMANIAN, V.2014. Magnetic composite an environmental super adsorbent for dye sequestration - A review. Environmental Nanotechnology, Monitoring and Management, 1–2, 36–49. ISSN 22151532. Search in Google Scholar

[21] DAMASCENO, B. S., DA SILVA, A. F. V., DE ARAÚJO, A. C. V. 2020. Dye adsorption onto magnetic and superparamagnetic Fe3O4 nanoparticles: A detailed comparative study. Journal of Environmental Chemical Engineering 8(5), 103994. ISSN 22133437. Search in Google Scholar

[22] BYCHKOVA, A. V., SOROKINA, O. N., KOVARSKI, A. L., SHAPIRO, A. B., ROSENFELD, M. A. 2011.The Investigation of Polyethyleneimine Adsorption on Magnetite Nanoparticles by Spin Labels Technique. Nanoscience and Nanotechnology Letters, 3(4), 591–593. Search in Google Scholar

[23] FOO, K.Y., HAMEED, B.H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. ISSN 13858947. Search in Google Scholar

eISSN:
1338-0532
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other