À propos de cet article

Citez

[1] GEYER, R., JAMBECK, J. R., LAW, K. L. 2017. Production, use, and fate of all plastics ever made. Supplementary materials. Science advances, 3(7), e1700782. ISSN 2375-2548. Search in Google Scholar

[2] PLASTICS EUROPE. 2018. Plastics – the facts 2018, An analysis of European plastics production, demand and waste data. 60. Search in Google Scholar

[3] JANG, B. N., JUNG, I., CHOI, J. 2009. Study of a novel halogen-free flame retardant system through TGA and structure analysis of polymers. Journal of applied polymer science, 112(5), 669-2675. ISSN 1097-4628. Search in Google Scholar

[4] PIELICHOWSKI, K., NJUGUNA, J. 2008. Thermal degradation of polymeric materials. 1st ed. iSmithers Rapra Publishing, 2008. 316 p. ISBN 1-85957-498-X. Search in Google Scholar

[5] PETERSON, J. D., VYAZOVKIN, S., WIGHT, C. A. 2001. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromolecular Chemistry and Physics, 202(6), 775-784. ISSN 1521-3935. Search in Google Scholar

[6] YU, L. L., ZHAO, C. Z., LIU, S. J., DI, M. 2013. Alkane Influence of Combustion Products in Polyethylene and Gasoline. Procedia Engineering, 52, 566-570. 1877-7058. Search in Google Scholar

[7] RANTUCH, P. 2015. Aktivačná energia termooxidácie polyetylénového granulátu (Activation energy of thermooxidation of polyethylene granulate). In: Integrovaná bezpečnosť (Integrated safety). Slovak Republic, pp. 55-63. ISBN 978-80-89753-04-8. Search in Google Scholar

[8] GERSTEN, J., FAINBERG, V., HETSRONI, G., SHINDLER, Y. 2000. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel, 79(13), 1679-1686. ISSN 0016-2361. Search in Google Scholar

[9] GALLO, E., BRAUN, U., SCHARTEL, B., RUSSO, P., ACIERNO, D. 2009. Halogen-free flame retarded poly (butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polymer Degradation and Stability, 94(8), 1245-1253. ISSN 0141-3910. Search in Google Scholar

[10] ARII, T., MASUDA, Y. 2004. The effect of humidity on thermal decomposition of terephthalate polyester. Journal of analytical and applied pyrolysis, 71(2), 525-536. ISSN: 0165-2370. Search in Google Scholar

[11] BIAN, J., LIN, H. L., HE, F. X., WANG, L., WEI, X. W., CHANG, I. T., SANCAKTAR, E. 2013. Processing and assessment of high-performance poly (butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets, European polymer journal, 49(6), 1406-1423. ISSN 0014-3057. Search in Google Scholar

[12] DHAHAK, A., HILD, G., ROUAUD, M., MAUVIEL, G., BURKLE-VITZTHUM, V. 2019. Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products. Journal of Analytical and Applied Pyrolysis, 142, 104664. ISSN 0165-2370. Search in Google Scholar

[13] JABARIN, S. A., LOFGREN, E. A. 1984. Thermal stability of polyethylene terephthalate, Polymer Engineering & Science, 24(13), 1056-1063. ISSN 1548-2634. Search in Google Scholar

[14] MELITEK. Meliflex – dedicated range of compounds for healthcare Search in Google Scholar

[15] KILGOUR, K. G. 2016. Elevation: Folding the Interior. Master theses. Victoria University of Welington, 2016. 156 p. Search in Google Scholar

[16] BAKER, G., COLLIER, P., WADE, C., SPEARPOINT, M., FLEISCHMANN, C. M., FRANK, K., SAZEGARA, S. 2013. A comparison of a priori modelling predictions with experimental results to validate a design fire generator submodel. In: 13th Fire and Materials conference. San Francisco; pp. 449-460. Search in Google Scholar

[17] SILCOCK, G. W. H., SHIELDS, T. J. 1995. A protocol for analysis of time-to-ignition data from bench scale tests, Fire Safety Journal, 24(1), 75-95. ISSN 0379-7112. Search in Google Scholar

[18] SHIELDS, T. J., SILCOCK, G. W., MURRAY, J. J. 1994. Evaluating ignition data using the flux time product, Fire and Materials, 18(4), 243-254. ISSN 1099-1018. Search in Google Scholar

[19] SHI, L., CHEW, M. Y. L. 2013. Fire behaviors of polymers under autoignition conditions in a cone calorimeter, Fire Safety Journal, 61, 243-253. ISSN 0379-7112. Search in Google Scholar

[20] CHEN, R., LU, S., LI, C., DING, Y., ZHANG, B., LO, S. 2016. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber, Journal of Thermal Analysis and Calorimetry, 123(1), 545-556. ISSN 1588-2926. Search in Google Scholar

[21] MIKKOLA, E., WICHMAN, I. S. 1989. On the thermal ignition of combustible materials, Fire and Materials, 14(3), 87-96. ISSN 1099-1018. Search in Google Scholar

[22] LYON, R. E., QUINTIERE, J. G. 2007. Criteria for piloted ignition of combustible solids, Combustion and Flame, 151(4), 551-559. ISSN 0010-2180. Search in Google Scholar

[23] THOMSON, H. E., DRYSDALE, D. D. 1987. Flammability of plastics I: ignition temperatures, Fire and Materials, 11(4), 163-172. ISSN 1099-1018. Search in Google Scholar

[24] DRYSDALE, D. D., THOMSON H. E. 1994. The Ignitability of Flame Retarded Plastics, Fire Safety Science, 4, 195-204. ISSN 18174299. Search in Google Scholar

[25] THOMSON H. E., DRYSDALE D. D. A BEYLER C. L. 1988. An experimental evaluation of critical surface temperature as a criterion for piloted ignition of solid fuels, Fire Safety Journal, 13(2-3), 185-196. ISSN 0379-7112. Search in Google Scholar

eISSN:
1338-0532
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other