Accès libre

Satellite Laser Ranging technique as a tool for the determination of the Schwarzschild, de Sitter and Lense-Thirring effects

À propos de cet article

Citez

Arnold, D., Montenbruck, O., Hackel, S., and Sośnica, K. (2019). Satellite laser ranging to low Earth orbiters: orbit and network validation. Journal of geodesy, 93(11):2315–2334, doi:10.1007/s00190-018-1140-4. Search in Google Scholar

Ashby, N. (2004). The Sagnac effect in the Global Positioning System. In Rizzi, G. and Ruggiero, M. L., editors, Relativity in rotating frames: relativistic physics in rotating reference frames, pages 11–28. Springer. Search in Google Scholar

Bloßfeld, M., Rudenko, S., Kehm, A., Panafidina, N., Müller, H., Angermann, D., Hugentobler, U., and Seitz, M. (2018). Consistent estimation of geodetic parameters from SLR satellite constellation measurements. Journal of Geodesy, 92:1003–1021, doi:10.1007/s00190-018-1166-7. Search in Google Scholar

Bogusz, J., Brzezinski, A., Kosek, W., and Nastula, J. (2015). Earth rotation and geodynamics. Geodesy and Cartography, 64(2), doi:10.1515/geocart-2015-0013. Search in Google Scholar

Brzeziński, A., Barlik, M., Andrasik, E., Izdebski, W., Kruczyk, M., Liwosz, T., Olszak, T., Pachuta, A., Pieniak, M., Próchniewicz, D., Rajner, M., Szpunar, R., Tercjak, M., and Walo, J. (2016a). Geodetic and geodynamic studies at Department of Geodesy and Geodetic Astronomy WUT. Reports on Geodesy and Geoinformatics, 100(1):165–200, doi:10.1515/rgg-2016-0013. Search in Google Scholar

Brzeziński, A., Jóźwik, M., Kaczorowski, M., Kalarus, M., Kasza, D., Kosek, W., Nastula, J., Szczerbowski, Z., Wińska, M., Wronowski, R., Zdunek, R., and Zieliński, J. B. (2016b). Geodynamic research at the Department of Planetary Geodesy, SRC PAS. Reports on Geodesy and Geoinformatics, 100(1):131–147, doi:10.1515/rgg-2016-0011. Search in Google Scholar

Ciufolini, I., Matzner, R., Gurzadyan, V., and Penrose, R. (2017). A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. The European Physical Journal C, 77:1–6, doi:10.1140/epjc/s10052-017-5339-y. Search in Google Scholar

Ciufolini, I., Paolozzi, A., Pavlis, E., Ries, J., Gurzadyan, V., Koenig, R., Matzner, R., Penrose, R., and Sindoni, G. (2012). Testing General Relativity and gravitational physics using the LARES satellite. The European Physical Journal Plus, 127:1–7, doi:10.1140/epjp/i2012-12133-8. Search in Google Scholar

Ciufolini, I., Paolozzi, A., Pavlis, E. C., Koenig, R., Ries, J., Gurzadyan, V., Matzner, R., Penrose, R., Sindoni, G., Paris, C., Khachatryan, H., and Mirzoyan, S. (2016). A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth’s dragging of inertial frames. The European Physical Journal C, 76:1–7, doi:10.1140/epjc/s10052-016-3961-8. Search in Google Scholar

Ciufolini, I., Paolozzi, A., Pavlis, E. C., Sindoni, G., Ries, J., Matzner, R., Koenig, R., Paris, C., Gurzadyan, V., and Penrose, R. (2019). An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites. The European Physical Journal C, 79(10):872, doi:10.1140/epjc/s10052-019-7386-z. Search in Google Scholar

Ciufolini, I., Paris, C., Pavlis, E. C., Ries, J., Matzner, R., Paolozzi, A., Ortore, E., Bianco, G., Kuzmicz-Cieslak, M., Gurzadyan, V., et al. (2023). First results of the LARES 2 space experiment to test the general theory of relativity. The European Physical Journal Plus, 138(11):1054, doi:10.1140/epjp/s13360-023-04696-6. Search in Google Scholar

Ciufolini, I. and Pavlis, E. C. (2004). A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 431(7011):958–960, doi:10.1038/nature03007. Search in Google Scholar

Combrinck, L. (2010). Satellite Laser Ranging. In Xu, G., editor, Sciences of Geodesy – I, pages 301–338. Springer, doi:10.1007/978-3-642-11741-1_9. Search in Google Scholar

De Sitter, W. (1917). Einstein’s theory of gravitation and its astronomical consequences. Third paper. Monthly Notices of the Royal Astronomical Society, 78:3–28, doi:10.1093/mnras/78.1.3. Search in Google Scholar

Dickey, J. O., Bender, P., Faller, J., Newhall, X., Ricklefs, R., Ries, J., Shelus, P., Veillet, C., Whipple, A., Wiant, J., Williams, J. G., and Yoder, C. F. (1994). Lunar Laser Ranging: A continuing legacy of the Apollo Program. Science, 265(5171):482–490, doi:10.1126/science.265.5171.482. Search in Google Scholar

Everitt, C., Muhlfelder, B., DeBra, D., Parkinson, B., Turneaure, J., Silbergleit, A., Acworth, E., Adams, M., Adler, R., Bencze, W., et al. (2015). The Gravity Probe B test of general relativity. Classical and Quantum Gravity, 32(22):224001, doi:10.1088/0264-9381/32/22/224001. Search in Google Scholar

Gourine, B. (2012). Use of Starlette and LAGEOS-1&-2 laser measurements for determination and analysis of stations coordinates and EOP time series. Comptes Rendus Geoscience, 344(6-7):319–333, doi:10.1016/j.crte.2012.05.002. Search in Google Scholar

Guo, J., Wang, Y., Shen, Y., Liu, X., Sun, Y., and Kong, Q. (2018). Estimation of SLR station coordinates by means of SLR measurements to kinematic orbit of LEO satellites. Earth, Planets and Space, 70(1):201, doi:10.1186/s40623-018-0973-7. Search in Google Scholar

Huang, C., Ries, J., Tapley, B., and Watkins, M. (1990). Relativistic effects for near-earth satellite orbit determination. Celestial Mechanics and Dynamical Astronomy, 48:167–185, doi:10.1007/BF00049512. Search in Google Scholar

Hugentobler, U. (2008). Orbit perturbations due to relativistic corrections. Unpublished notes available at https://impacts.obspm.fr/content/supporting_material/chapter10/relativity_hugentobler.pdf. Search in Google Scholar

ILRS - LAGEOS (2023). International Laser Ranging Service, LAGEOS-1,-2. Official Website of ILRS. Last accessed January 2023. Search in Google Scholar

ILRS - LARES (2023). International Laser Ranging Service, LARES – LAser RElativity Satellite. Official Website of ILRS. Last accessed January 2023. Search in Google Scholar

Jagoda, M., Rutkowska, M., and Kraszewska, K. (2016). The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodynamica et Geomaterialia, 14(2):153–158, doi:10.13168/AGG.2016.0036. Search in Google Scholar

JPL Horizons (2023). Jet Propulsion Laboratory Horizons System. Official Website of JPL. Last accessed January 2023. Search in Google Scholar

Lejba, P. and Schillak, S. (2011). Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Advances in Space Research, 47(4):654–662, doi:10.1016/j.asr.2010.10.013. Search in Google Scholar

Lense, J. and Thirring, H. (1918). Über den einfluss der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. Physikalische Zeitschrift, 19:156. Search in Google Scholar

Lucchesi, D. M. (2003). LAGEOS II perigee shift and Schwarzschild gravitoelectric field. Physics Letters A, 318(3):234–240, doi:10.1016/j.physleta.2003.07.015. Search in Google Scholar

Lucchesi, D. M., Anselmo, L., Bassan, M., Magnafico, C., Pardini, C., Peron, R., Pucacco, G., and Visco, M. (2019). General relativity measurements in the field of earth with Laser-Ranged satellites: state of the art and perspectives. Universe, 5(6):141, doi:10.3390/universe5060141. Search in Google Scholar

Lucchesi, D. M. and Peron, R. (2010). Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity. Physical Review Letters, 105(23):231103, doi:10.1103/PhysRevLett.105.231103. Search in Google Scholar

Lucchesi, D. M. and Peron, R. (2014). LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics. Physical Review D, 89(8):082002, doi:10.1103/PhysRevD.89.082002. Search in Google Scholar

McCarthy, J., Rowton, S., Moore, D., Pavlis, D., Luthcke, S., and Tsaoussi, T. (2015). GEODYN systems description, volume 1. Technical report. Search in Google Scholar

Pardini, C., Anselmo, L., Lucchesi, D., and Peron, R. (2017). On the secular decay of the LARES semi-major axis. Acta Astronautica, 140:469–477, doi:10.1016/j.actaastro.2017.09.012. Search in Google Scholar

Pearlman, M., Arnold, D., Davis, M., Barlier, F., Biancale, R., Vasiliev, V., Ciufolini, I., Paolozzi, A., Pavlis, E. C., Sośnica, K., and Blossfeld, M. (2019a). Laser geodetic satellites: a high-accuracy scientific tool. Journal of Geodesy, 93:2181–2194, doi:10.1007/s00190-019-01228-y. Search in Google Scholar

Pearlman, M. R., Noll, C. E., Pavlis, E. C., Lemoine, F. G., Combrink, L., Degnan, J. J., Kirchner, G., and Schreiber, U. (2019b). The ILRS: approaching 20 years and planning for the future. Journal of Geodesy, 93:2161–2180, doi:10.1007/s00190-019-01241-1. Search in Google Scholar

Petit, G. and Luzum, B. (2010). IERS Technical Note No. 36. Technical report, Bureau International Des Poids Et Mesures Sevres (France), 1–179. Search in Google Scholar

Rutkowska, M. and Jagoda, M. (2010). Estimation of the elastic Earth parameters (h2, l2) using SLR data. Advances in space research, 46(7):859–871, doi:10.1016/j.asr.2010.04.010. Search in Google Scholar

Rutkowska, M. and Jagoda, M. (2015). SLR technique used for description of the Earth elasticity. Artificial Satellites, 50(3):127–141, doi:10.1515/arsa-2015-0010. Search in Google Scholar

Schillak, S., Lejba, P., and Michałek, P. (2021). Analysis of the quality of SLR station coordinates determined from Laser Ranging to the LARES satellite. Sensors, 21(3):737, doi:10.3390/s21030737. Search in Google Scholar

Schwarzschild, K. (2003). On the gravitational field of a mass point according to Einstein’s theory. Gen. Relativ. Gravit, 35(5):951–959, doi:10.1023/A:1022971926521. Search in Google Scholar

Seeber, G. (2003). Satellite geodesy, 2nd ed. Walter de gruyter, doi:10.1515/9783110200089. Search in Google Scholar

Shen, Y., Guo, J., Zhao, C., Yu, X., and Li, J. (2015). Earth rotation parameter and variation during 2005–2010 solved with LAGEOS SLR data. Geodesy and Geodynamics, 6(1):55–60, doi:10.1016/j.geog.2014.12.002. Search in Google Scholar

Sośnica, K. (2014). Determination of precise satellite orbits and geodetic parameters using Satellite Laser Ranging. Astronomical Institute, University of Bern, Switzerland, doi:10.7892/boris.53915. Search in Google Scholar

Sośnica, K. and Bosy, J. (2019). Global Geodetic Observing System 2015–2018. Advances in Geodesy and Geoinformation, 68(1):121–144, doi:10.24425/gac.2019.126090. Search in Google Scholar

Sośnica, K., Bury, G., Zajdel, R., Kazmierski, K., Ventura-Traveset, J., Prieto-Cerdeira, R., and Mendes, L. (2021). General relativistic effects acting on the orbits of Galileo satellites. Celestial Mechanics and Dynamical Astronomy, 133:14, doi:10.1007/s10569-021-10014-y. Search in Google Scholar

Sośnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler, G., Arnold, D., and Dach, R. (2015). Time variable Earth’s gravity field from SLR satellites. Journal of Geodesy, 89:945–960, doi:10.1007/s00190-015-0825-1. Search in Google Scholar

Specht, M. (2022). Experimental studies on the relationship between HDOP and position error in the GPS system. Metrology and Measurement Systems, 29(1):17–36, doi:10.24425/mms.2022.138549. Search in Google Scholar

Strugarek, D., Sośnica, K., Arnold, D., Jäggi, A., Zajdel, R., and Bury, G. (2021). Determination of SLR station coordinates based on LEO, LARES, LAGEOS, and Galileo satellites. Earth, Planets and Space, 73:87, doi:10.1186/s40623-021-01397-1. Search in Google Scholar

Williams, J. G., Turyshev, S. G., and Boggs, D. H. (2004). Progress in lunar laser ranging tests of relativistic gravity. Physical Review Letters, 93(26):261101, doi:10.1103/PhysRevLett.93.261101. Search in Google Scholar

Zelensky, N. P., Lemoine, F. G., Chinn, D. S., Melachroinos, S., Beck-ley, B. D., Beall, J. W., and Bordyugov, O. (2014). Estimated SLR station position and network frame sensitivity to time-varying gravity. Journal of Geodesy, 88:517–537, doi:10.1007/s00190-014-0701-4. Search in Google Scholar

eISSN:
2391-8152
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry