Accès libre

Evaluating Repeatability of RTK (GPS and Galileo/GPS) performance in the analysis of points located in areas with and without obstructions

À propos de cet article

Citez

Andreas, H., Abidin, H. Z., Sarsito, D. A., and Pradipta, D. (2019). Study the capabilities of RTK Multi GNSS under forest canopy in regions of Indonesia. In E3S Web of Conferences, volume 94, page 01021. EDP Sciences.10.1051/e3sconf/20199401021 Search in Google Scholar

Angrisano, A., Gaglione, S., Gioia, C., Borio, D., and Fortuny-Guasch, J. (2013). Testing the test satellites: the Galileo IOV measurement accuracy. In 2013 International Conference on Localization and GNSS (ICL-GNSS), 25-27 June 2013, Turin, Italy, pages 1–6. IEEE, doi:10.1109/ICL-GNSS.2013.6577253.10.1109/ICL-GNSS.2013.6577253 Search in Google Scholar

Borio, D., Senni, T., and Fernández-Hernández, I. (2020). Galileo’s High Accuracy Service—Field experimentation of data dissemination schemes. Inside GNSS, 15(4). Search in Google Scholar

Cai, C., He, C., Santerre, R., Pan, L., Cui, X., and Zhu, J. (2016). A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Survey Review, 48(349):287–295, doi:10.1179/1752270615Y.0000000032.10.1179/1752270615Y.0000000032 Search in Google Scholar

Cai, C., Luo, X., Liu, Z., and Xiao, Q. (2014). Galileo signal and positioning performance analysis based on four IOV satellites. The Journal of Navigation, 67(5):810–824, doi:10.1017/S037346331400023X.10.1017/S037346331400023X Search in Google Scholar

Carlin, L., Hauschild, A., and Montenbruck, O. (2021). Precise point positioning with GPS and Galileo broadcast ephemerides. GPS Solutions, 25(77):1–13, doi:10.1007/s10291-021-01111-4.10.1007/s10291-021-01111-4 Search in Google Scholar

Deckert, C. and Bolstad, P. V. (1996). Forest canopy, terrain, and distance effects on Global Positioning System point accuracy. Photogrammetric Engineering and Remote Sensing, 62(3):317–321. Search in Google Scholar

Diessongo, T. H., Schüler, T., and Junker, S. (2014). Precise position determination using a Galileo E5 single-frequency receiver. GPS solutions, 18(1):73–83, doi:10.1007/s10291-013-0311-2.10.1007/s10291-013-0311-2 Search in Google Scholar

Elmezayen, A. and El-Rabbany, A. (2019). Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors, 19(11):2593, doi:10.3390/s19112593.10.3390/s19112593660367231174413 Search in Google Scholar

ESA (2017). Galileo fact sheet, European Space Agency. https://esamultimedia.esa.int/docs/galileo/GalileoFactsheet2017.pdf. Last accessed April 2022. Search in Google Scholar

ESA (2020). Galileo Services – Open Service Performance Report. https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo-OS-Quarterly-Performance_Report-Q4-2020.pdf. Search in Google Scholar

ESA (2021). European GNSS (Galileo) Open Service. https://galileognss.eu/wp-content/uploads/2015/12/Galileo_OS_SIS_ICD_v1.2.pdf. Last accessed April 2022. Search in Google Scholar

Feng, Y. and Moody, M. (2006). Improved phase ambiguity resolution using three GNSS signals. PCT/AU2006/000492, Publication Number WO/2006/108227. Search in Google Scholar

Feng, Y. and Rizos, C. (2005). Three carrier approaches for future global, regional and local GNSS positioning services: concepts and performance perspectives. In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005),Long Beach, CA, September 2005, pages 2277–2287. Search in Google Scholar

Gaglione, S., Angrisano, A., Castaldo, G., Freda, P., Gioia, C., Innac, A., Troisi, S., and Del Core, G. (2015). The first Galileo FOC satellites: from useless to essential. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 11 April 2019, Milan, Italy, pages 3667–3670. IEEE, doi:10.1109/IGARSS.2015.7326618.10.1109/IGARSS.2015.7326618 Search in Google Scholar

Hatch, R. R. (2006). A new three-frequency, geometry-free technique for ambiguity resolution. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 309–316. Search in Google Scholar

Hossam-E-Haider, M., Tabassum, A., Shihab, R. H., and Hasan, C. M. (2014). Comparative analysis of GNSS reliability: GPS, GALILEO and combined GPS-GALILEO. In 2013 International Conference on Electrical Information and Communication Technology (EICT), pages 1–6. IEEE.10.1109/EICT.2014.6777835 Search in Google Scholar

Kaartinen, H., Hyyppa, J., Vastaranta, M., Kukko, A., Jaakkola, A., Yu, X., Pyorala, J., Liang, X., Liu, J., Wang, Y., et al. (2015). Accuracy of kinematic positioning using Global Satellite Navigation Systems under forest canopies. Forests.10.3390/f6093218 Search in Google Scholar

Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., and Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6):607–635, doi:10.1007/s00190-015-0802-8.10.1007/s00190-015-0802-8 Search in Google Scholar

Lu, H. and Lian, B. (2016). New generation GNSS signal processing and evaluation technology. National Defense Industry Press, Beijing. Search in Google Scholar

Luo, X., Chen, J., and Richter, B. (2017). How Galileo benefits high-precision RTK. GPS World, pages 22–28. Search in Google Scholar

Meyer, T. H., Bean, J. E., Ferguson, C. R., and Naismith, J. M. (2002). The effect of broadleaf canopies on survey-grade horizontal gps/glonass measurements. Search in Google Scholar

Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz, F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod, K., and Schaer, S. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–achievements, prospects and challenges. Advances in space research, 59(7):1671–1697, doi:10.1016/j.asr.2017.01.011.10.1016/j.asr.2017.01.011 Search in Google Scholar

Odijk, D., Teunissen, P. J., and Huisman, L. (2012). First results of mixed GPS+ GIOVE single-frequency RTK in Australia. Journal of spatial science, 57(1):3–18, doi:10.1080/14498596.2012.679247.10.1080/14498596.2012.679247 Search in Google Scholar

Odijk, D., Teunissen, P. J., and Khodabandeh, A. (2014). Galileo IOV RTK positioning: standalone and combined with GPS. Survey Review, 46(337):267–277, doi:10.1179/1752270613Y.0000000084.10.1179/1752270613Y.0000000084 Search in Google Scholar

Odolinski, R., Teunissen, P., and Odijk, D. (2015). Combined GPS+ BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26(4):045801. Search in Google Scholar

Ogundipe, O., Ince, S., and Bonenberg, K. (2014). GNSS positioning under forest canopy. Disponível:< https://www.researchgate.net. Search in Google Scholar

O’Donnell, T., Fisher, J. W., Simposon, S., Brodin, G., Bryant, E., and Walsh, D. (2003). Galileo performance. GPS World, pages 38–45. Search in Google Scholar

Pan, L., Cai, C., Santerre, R., and Zhang, X. (2017). Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Survey Review, 49(354):197–205, doi:10.1080/00396265.2016.1151628.10.1080/00396265.2016.1151628 Search in Google Scholar

Pirti, A., Arslan, N., Deveci, B., Aydin, O., Erkaya, H., and Hosbas, R. (2009). Real-time kinematic GPS for cadastral surveying. Survey Review, 41(314):339–351, doi:10.1179/003962609X451582.10.1179/003962609X451582 Search in Google Scholar

Pirti, A., Gümüş, K., Erkaya, H., and Hoşbaş, R. G. (2010). Evaluating repeatability of RTK GPS/GLONASS near/under forest environment. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 31(1):23–33. Search in Google Scholar

Pirti, A., Yucel, M. A., and Gumus, K. (2013). Testing Real Time Kinematic GNSS (GPS and GPS/GLONASS) methods in obstructed and unobstructed sites. Geodetski vestnik, 57(3):498–512. Search in Google Scholar

Sigrist, P., Coppin, P., and Hermy, M. (1999). Impact of forest canopy on quality and accuracy of GPS measurements. International journal of remote sensing, 20(18):3595–3610. Search in Google Scholar

Simsky, A., Sleewaegen, J.-M., Hollreiser, M., and Crisci, M. (2006). Performance assessment of Galileo ranging signals transmitted by GSTB-V2 satellites. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), September 26 - 29, 2006, Fort Worth, TX, pages 1547–1559. Search in Google Scholar

Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., and Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Advances in Space Research, 55(1):269–281, doi:10.1016/j.asr.2014.06.030.10.1016/j.asr.2014.06.030 Search in Google Scholar

Steigenberger, P. and Montenbruck, O. (2017). Galileo status: orbits, clocks, and positioning. GPS solutions, 21(2):319–331. Search in Google Scholar

Wu, W., Guo, F., and Zheng, J. (2020). Analysis of Galileo signal-in-space range error and positioning performance during 2015–2018. Satellite Navigation, 1(6):1–13, doi:10.1186/s43020-019-0005-1.10.1186/s43020-019-0005-1 Search in Google Scholar

Zaminpardaz, S. and Teunissen, P. J. (2017). Analysis of Galileo IOV+ FOC signals and E5 RTK performance. GPS Solutions, 21(4):1855–1870, doi:10.1007/s10291-017-0659-9.10.1007/s10291-017-0659-9 Search in Google Scholar

eISSN:
2391-8152
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry