Accès libre

The role of extracellular vesicles in phenotypic cancer transformation

À propos de cet article

Citez

1. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle 2009; 8: 2014-18.10.4161/cc.8.13.898819535896Search in Google Scholar

2. Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36: 888-906.10.1055/s-0030-126704321049390Search in Google Scholar

3. Pap E. The role of microvesicles in malignancies. Adv Exp Med Biol 2011; 714: 183-199.10.1007/978-94-007-0782-5_1021506015Search in Google Scholar

4. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/ microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 2011; 1: 98-110.Search in Google Scholar

5. Veranic P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, et al. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 2008; 95: 4416-25.10.1529/biophysj.108.131375256792418658210Search in Google Scholar

6. Sustar V, Bedina-Zavec A, Stukelj R, Frank M, Bobojevic G, Jansa R, et al. Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process. Int J Nanomedicine 2011; 6: 2737-48.Search in Google Scholar

7. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13: 269-88.10.1111/j.1365-2141.1967.tb08741.x6025241Search in Google Scholar

8. Junkar I, Sustar V, Frank M, Jansa V, Bedina Zavec A, Rozman B, et al. Blood and synovial microparticles as revealed by atomic force and scanning electron microscope. Open Autoimmun J 2009; 1: 50-58.10.2174/1876894600901010050Search in Google Scholar

9. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004; 101: 13368-73.10.1073/pnas.040345310151657315326289Search in Google Scholar

10. Gonzales P, Pisitkun T, Knepper MA. Urinary exosomes: is there a future? Nephrol Dial Transplant 2008; 23: 1799-801.Search in Google Scholar

11. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 2004; 64: 7045-9.10.1158/0008-5472.CAN-04-180015466198Search in Google Scholar

12. Mrvar-Brecko A, Sustar V, Jansa V, Stukelj R, Jansa R, Mujagic E, et al. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis 2010; 44: 307-12.10.1016/j.bcmd.2010.02.00320199878Search in Google Scholar

13. Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 2006; 54: 3809-14.10.1002/art.2227617133577Search in Google Scholar

14. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 2004; 31: 114-21.10.1165/rcmb.2003-0238OC14975938Search in Google Scholar

15. Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, et al. Exosomes with major histocompatibility complex class II and costimulatory molecules are present in human BAL fluid. Eur Respir J 2003; 22: 578-583.10.1183/09031936.03.0004170314582906Search in Google Scholar

16. Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells MolDis 2005; 35: 1-10.10.1016/j.bcmd.2005.03.00515893944Search in Google Scholar

17. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007; 179: 1969-78.10.4049/jimmunol.179.3.196917641064Search in Google Scholar

18. Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol 2006; 176: 1534-42.10.4049/jimmunol.176.3.153416424182Search in Google Scholar

19. Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. JReprod Immunol 2008; 79: 12-7.10.1016/j.jri.2008.06.00118715652Search in Google Scholar

20. Perkumas KM, Hoffman EA, McKay BS, Allingham RR, Stamer WD. Myocilin-associated exosomes in human ocular samples. Exp Eye Res 2007; 84: 209-12.10.1016/j.exer.2006.09.020178010717094967Search in Google Scholar

21. Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosomelike vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 2008; 31: 1059-62.10.1248/bpb.31.105918520029Search in Google Scholar

22. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20:1487-95.10.1038/sj.leu.240429616791265Search in Google Scholar

23. van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain Tumor Microvesicles: Insights into Intercellular Communication in the Nervous System. Cell MolNeurobiol 2011; 31: 949-59.10.1007/s10571-011-9697-y370217221553248Search in Google Scholar

24. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470-U1209.10.1038/ncb1800Search in Google Scholar

25. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113: 752-60.10.1002/ijc.20657Search in Google Scholar

26. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005; 4: 1595-604.10.1158/1535-7163.MCT-05-0102Search in Google Scholar

27. Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 2003; 63: 4331-7.Search in Google Scholar

28. Hakulinen J, Junnikkala S, Sorsa T, Meri S. Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 2004; 34: 2620-9.10.1002/eji.200424969Search in Google Scholar

29. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 2006; 66: 9290-8.10.1158/0008-5472.CAN-06-1819Search in Google Scholar

30. Abid Hussein MN, Boing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 2007; 98: 1096-107.10.1160/TH05-04-0231Search in Google Scholar

31. Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003; 39: 184-91.10.1016/S0959-8049(02)00596-8Search in Google Scholar

32. Jansa R, Sustar V, Frank M, Susanj P, Bester J, Mancek-Keber M, et al. Number of microvesicles in peripheral blood and ability of plasma to induce adhesion between phospholipid membranes in 19 patients with gastrointestinal diseases. Blood Cells Mol Dis 2008; 41: 124-32.10.1016/j.bcmd.2008.01.00918387323Search in Google Scholar

33. Baran J, Baj-Krzyworzeka M, Weglarczyk K, Szatanek R, Zembala M, Barbasz J, et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010; 59: 841-50.10.1007/s00262-009-0808-220043223Search in Google Scholar

34. Lipowsky R. The conformation of membranes. Nature 1991; 349: 475-81.10.1038/349475a01992351Search in Google Scholar

35. Kralj-Iglic V, Babnik B, Gauger DR, May S, Iglic A. Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J StatPhys 2006; 125: 727-52.10.1007/s10955-006-9051-9Search in Google Scholar

36. Hagerstrand H, Isomaa B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim Biophys Acta 1992; 1109: 117-26.10.1016/0005-2736(92)90074-VSearch in Google Scholar

37. Black PH. Shedding from Normal and Cancer-Cell Surfaces. New Engl J Med 1980; 303: 1415-6.10.1056/NEJM198012113032411Search in Google Scholar

38. Kralj-Iglic V, Batista U, Hägerstrand H, Iglic A, Majhenc J, Sok M. On mechanisms of cell plasma membrane vesiculation. Radiol Oncol 1998; 32: 119-23.Search in Google Scholar

39. Kralj-Iglic V, Veranic P. Curvature-Induced Sorting of Bilayer Membrane Constituents and Formation of Membrane Rafts. In: A. Leitmannova Liu, editor. Advances in planar lipid bilayers and liposomes, Vol. 5, Elsevier; 2007. p. 129-49.10.1016/S1554-4516(06)05005-8Search in Google Scholar

40. Kralj-Iglic V, Iglic A, Hagerstrand H, Peterlin P. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. PhysRev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000; 61: 4230-4.10.1103/PhysRevE.61.4230Search in Google Scholar

41. Sheetz MP, Singer SJ. Biological-membranes as bilayer couples - molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 1974; 71: 4457-61.10.1073/pnas.71.11.4457Search in Google Scholar

42. Helfrich W. Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z. Naturforsch. 1974; 29c: 510.10.1515/znc-1974-9-1010Search in Google Scholar

43. Evans EA. Bending resistance and chemically induced moments in membrane bilayers. Biophys J 1974; 14: 923-31.10.1016/S0006-3495(74)85959-XSearch in Google Scholar

44. Kralj-Iglic V. Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomedicine 2012; 7: 3579-96.10.2147/IJN.S29076341420422888223Search in Google Scholar

45. Zachowski A, Devaux PF. Transmembrane movements of lipids. Experientia 1990; 46: 644-5610.1007/BF019397032193828Search in Google Scholar

46. Sims PJ, Wiedmer T. Unraveling the mysteries of phospholipid scrambling. Thromb Haemost 2001; 86: 266-75.10.1055/s-0037-1616224Search in Google Scholar

47. Wydro P, Hac-Wydro K. Thermodynamic description of the interactions between lipids in ternary Langmuir monolayers: the study of cholesterol distribution in membranes. J Phys Chem B 2007; 111: 2495-502.10.1021/jp066950+Search in Google Scholar

48. Pap E, Pallinger E, Pasztoi M, Falus A. Highlights of a new type of intercellular communication: microvesicle-based information transfer. InflammRes 2009; 58: 1-8.10.1007/s00011-008-8210-7Search in Google Scholar

49. van Meer G. Dynamic transbilayer lipid asymmetry. Csh Perspect Biol 2011; 3.10.1101/cshperspect.a004671Search in Google Scholar

50. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/ microvesicles as a mechanism of cell-to-cell communication. Kidney Int2010; 78: 838-48.10.1038/ki.2010.278Search in Google Scholar

51. Davizon P, Lopez JA. Microparticles and thrombotic disease. Curr OpinHematol 2009; 16: 334-41.10.1097/MOH.0b013e32832ea49cSearch in Google Scholar

52. Mrówczyńska L, Salzer U, Iglič A, Hägerstrand H. Curvature factor and membrane solubilisation, with particular reference to membrane rafts. CellBiol Int, 2011; 35: 991-5.10.1042/CBI20100786Search in Google Scholar

53. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569-72.10.1038/42408Search in Google Scholar

54. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Bi 1998; 14: 111-36.10.1146/annurev.cellbio.14.1.111Search in Google Scholar

55. Ikonen E. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 2001; 13: 470-7.10.1016/S0955-0674(00)00238-6Search in Google Scholar

56. Flaumenhaft R. Formation and fate of platelet microparticles. Blood CellsMol Dis 2006; 36: 182-7.10.1016/j.bcmd.2005.12.019Search in Google Scholar

57. Huttner WB, Zimmerberg J. Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 2001; 13: 478-84.10.1016/S0955-0674(00)00239-8Search in Google Scholar

58. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401: 133-41.10.1038/4361310490020Search in Google Scholar

59. Kozlov MM. Fission of biological membranes: interplay between dynamin and lipids. Traffic 2001; 2: 51-65.10.1034/j.1600-0854.2001.020107.x11208168Search in Google Scholar

60. Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791-9.10.1182/blood.V94.11.3791Search in Google Scholar

61. Pap E, Pallinger E, Falus A. The role of membrane vesicles in tumorigenesis. Crit Rev Oncol Hematol 2011; 79: 213-23.10.1016/j.critrevonc.2010.07.01520884225Search in Google Scholar

62. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69: 5601-9.10.1158/0008-5472.CAN-08-3860285387619549916Search in Google Scholar

63. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106: 1604-11.10.1182/blood-2004-03-109515741221Search in Google Scholar

64. Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: A message in a bottle. Biochim Biophys Acta 2012; 1826: 103-11.10.1016/j.bbcan.2012.03.00622503823Search in Google Scholar

65. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature 2007; 450: 435-9.10.1038/nature0630717960135Search in Google Scholar

66. Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005; 106: 216-23.10.1182/blood-2005-01-022015790784Search in Google Scholar

67. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular Internalization of exosomes occurs through phagocytosis. Traffic 2010; 11: 675-87.10.1111/j.1600-0854.2010.01041.x20136776Search in Google Scholar

68. Teissier E, Pecheur EI. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Biophys J 2007; 36: 887-99.10.1007/s00249-007-0201-z708011517882414Search in Google Scholar

69. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. JBiol Chem 2009; 284: 34211-22.10.1074/jbc.M109.041152279719119801663Search in Google Scholar

70. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 2011; 11: 108.10.1186/1471-2407-11-108307294921439085Search in Google Scholar

71. Taraboletti G, D’Ascenzo S, Giusti I, Marchetti D, Borsotti P, Millimaggi D, et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 2006; 8: 96-103.10.1593/neo.05583157851216611402Search in Google Scholar

72. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19: 43-51.10.1016/j.tcb.2008.11.00319144520Search in Google Scholar

73. Rak J, Guha A. Extracellular vesicles - vehicles that spread cancer genes. Bioessays 2012; 34: 489-97.10.1002/bies.20110016922442051Search in Google Scholar

74. Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer - the emerging science of cellular ‘debris’. Semin Immunopathol 2011; 33: 455-67.10.1007/s00281-011-0250-321318413Search in Google Scholar

75. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10: 619-24.10.1038/ncb172518425114Search in Google Scholar

76. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno- Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883-91.10.1038/nm.2753Search in Google Scholar

77. Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C. The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene 2004; 23: 956-963.10.1038/sj.onc.1207070Search in Google Scholar

78. McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 2010; 10: 294.10.1186/1471-2407-10-294Search in Google Scholar

79. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 2002; 360: 295-305. 10.1016/S0140-6736(02)09552-1Search in Google Scholar

80. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 2005; 25: 3703-7.Search in Google Scholar

81. Dinger ME, Mercer TR, Mattick JS. RNAs as extracellular signaling molecules. J Mol Endocrinol 2008; 40: 151-9.10.1677/JME-07-016018372404Search in Google Scholar

82. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853-8.10.1126/science.106492111679670Search in Google Scholar

83. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-69.10.1038/nrc184016557279Search in Google Scholar

84. Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48: 1647-53.10.1093/clinchem/48.10.1647Search in Google Scholar

85. Tsui NB, Ng EK, Lo YM. Molecular analysis of circulating RNA in plasma. Methods Mol Biol 2006; 336: 123-34.10.1385/1-59745-074-X:123Search in Google Scholar

86. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-9.10.1038/ncb159617486113Search in Google Scholar

87. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10: 556.10.1186/1471-2164-10-556278858519930720Search in Google Scholar

88. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Branski P, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 2006; 55: 808-18.10.1007/s00262-005-0075-916283305Search in Google Scholar

89. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesiclemediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011; 54: 1237-48.10.1002/hep.24504331036221721029Search in Google Scholar

90. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoSOne 2010; 5: e13247.10.1371/journal.pone.0013247295191220949044Search in Google Scholar

91. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110:13-21.10.1016/j.ygyno.2008.04.03318589210Search in Google Scholar

92. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc NatlAcad Sci USA 2001; 98: 6407-11.10.1073/pnas.1011299983348111353826Search in Google Scholar

93. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2: 180.10.1038/ncomms1180304068321285958Search in Google Scholar

94. Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011; 2011: 407536.10.4061/2011/407536309256021584235Search in Google Scholar

95. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2010; 117: 1-4.10.1007/s00702-009-0288-819680595Search in Google Scholar

96. Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 2004; 101: 14572-9.10.1073/pnas.040483810152198615310846Search in Google Scholar

97. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10: 691-703.10.1038/nrg2640Search in Google Scholar

98. Wiemels JL, Hofmann J, Kang M, Selzer R, Green R, Zhou M, et al. Chromosome 12p deletions in TEL-AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally. Cancer Res 2008; 68: 9935-44.10.1158/0008-5472.CAN-08-2139Search in Google Scholar

99. Bretscher MS. Membrane structure: some general principles. Science 1973; 181: 622-9.10.1126/science.181.4100.622Search in Google Scholar

100. Dahiya R, Boyle B, Goldberg BC, Yoon WH, Konety B, Chen K, et al. Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines. Biochem Cell Biol 1992; 70: 548-54.10.1139/o92-085Search in Google Scholar

101. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res 2002; 62: 6312-7.Search in Google Scholar

102. McGarry LJ, Thompson D. Retrospective database analysis of the prevention of venous thromboembolism with low-molecular-weight heparin in acutely III medical inpatients in community practice. Clin Ther 2004; 26: 419-30.10.1016/S0149-2918(04)90038-0Search in Google Scholar

103. Smorenburg SM, Hettiarachchi RJ, Vink R, Buller HR. The effects of unfractionated heparin on survival in patients with malignancy-a systematic review. Thromb Haemost 1999; 82: 1600-4.10.1055/s-0037-1614885Search in Google Scholar

104. Stevenson JL, Choi SH, Wahrenbrock M, Varki A, Varki NM. Heparin effects in metastasis and Trouseeau syndrome: anticoagulation is not the primary mechanism. Haem Rep 2005; 1: 59-60.Search in Google Scholar

105. Sustar V, Jansa R, Frank M, Hagerstrand H, Krzan M, Iglic A et al. Suppression of membrane microvesiculation - a possible anticoagulant and anti-tumor progression effect of heparin. Blood Cells Mol Dis 2009; 42: 223-7.10.1016/j.bcmd.2009.01.01219261492Search in Google Scholar

106. Urbanija J, Tomsic N, Lokar M, Ambrozic A, Cucnik S, Rozman B, et al. Coalescence of phospholipid membranes as a possible origin of anticoagulant effect of serum proteins. Chem Phys Lipids 2007; 150: 49-57.10.1016/j.chemphyslip.2007.06.21617662972Search in Google Scholar

107. Urbanija J, Babnik B, Frank M, Tomsic N, Rozman B, Kralj-Iglic V, et al. Attachment of beta 2-glycoprotein I to negatively charged liposomes may prevent the release of daughter vesicles from the parent membrane. EurBiophys J 2008; 37: 1085-95.Search in Google Scholar

108. May S, Iglič A, Reščič J, Maset S., Bohinc K. Bridging like-charged macroions through long divalent rod-like ions. J Phys Chem B 2008; 112: 1685-92.10.1021/jp073355e18205341Search in Google Scholar

109. Velikonja A, Perutkova Š, Gongadze E, Kramar P, Polak A, Maček-Lebar A, Iglič A. Monovalent ions and water dipoles in contact with dipolar zwitterionic lipid headroups - theory and MD simulations, Int J Mol Sci 2013; 14: 2846-61.Search in Google Scholar

110. Gongadze E, Iglič A. Excluded volume effect of counterions and water dipoles near a highly charged surface due to a rotationally averaged Boltzmann factor for water dipoles. Gen Phys Biophys 2013; 21: 143-5..10.4149/gpb_201301423531844Search in Google Scholar

111. Ambrožič A, Čučnik S, Tomšič N, Urbanija J, Lokar M, Babnik B et al. Interaction of giant phospholipid vesicles containing cardiolipin and cholesterol with beta 2-glycoprotein-I and anti-beta2-glycoprotein-I antibodies. Autoimmun Rev 2006; 6: 10-5.10.1016/j.autrev.2006.03.00117110310Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology