Accès libre

Organisation and Principle Design of a Flexible Manufacturing Cell Dedicated to the Annual Overhaul Activities for TAB-77

,  et   
28 août 2023
À propos de cet article

Citez
Télécharger la couverture

Abrudan, I. (2011). Managementul la contactul cu marile teme de dezbatere ale lumii contemporane. Revista de Management și Inginerie Economică, Vol. 10, Issue 3, Cluj-Napoca, 5-12. Search in Google Scholar

Badea, D., & Petrişor, S.M. (2012). Military logistic basic approach as a system. Sibiu: Editura Academiei Forţelor Terestre. Search in Google Scholar

Bălan, C. (2006). Logistica. Bucharest: Uranus.Search in Google Scholar

Ballou, R.H. (2004). Business Logistics Management / Supply Chain management. 5th Edition, New Jersey: Prentice Hall Publishing House, available at: https://www.amazon.com/Business-Logistics-Supply-Chain-Management/dp/0130661848. Search in Google Scholar

Bengtsson, M., Olsson, E., Funk, P., & Jackson, M. (2004). Design of Condition Based Maintenance System – A Case Study using Sound Analysis and Case-Based Reasoning. Proceedings of the 8th Conference of Maintenance and Reliability, Marcon. Available at: https://www.researchgate.net/publication/2877334_Technical_Design_of_Condition_Based_Maintenance_System Search in Google Scholar

Coito, T., Faria, P., Martins, M., Firme, B., Vieira, S.M., Figuiredoand, J. (2022). Digital Twin of a Flexible Manufacturing System for Solutions Preparation. Special Issue Digital Twins, Sensing Technologies and Automation in Industry 4.0. Available at: https://www.mdpi.com/2673-4052/3/1/8, 153-175. Search in Google Scholar

Crețu, G. (2006). Enterprise Engineering – A New Organizational Discipline (1). Revista Informatica Economică, Vol. 3, Issue 39, 57-63. Search in Google Scholar

Ferreras-Higuero, E., Leal-Munoz, E., Garcia, J., Chacon, E., & Vizan, A. (2020). Robot-process precision modelling for the improvement of productivity in flexible manufacturing cells. Robotic and Computer – Integrated Manufacturing. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0736584519306532 Search in Google Scholar

Florescu, A., & Brabas, S.A. (2020). Modeling and Simulation of a Flexible Manufacturing System – A Basic Component of Industry 4.0. Special Issue: Advanced Manufacturing Technologies and Their Applications. Available at: https://doi.org/10.3390/app10228300 Search in Google Scholar

Ispas, V. (2004). Manipulatoare şi roboţi industriali. Bucharest: Editura Didactică şi Pedagogică. Search in Google Scholar

Maccarthy, B.L., & Liu, J. (2007). A new classification scheme for flexible manufacturing systems. International Journal of Production Research, Vol. II. Available at: https://doi.org/10.1080/00207549308956726, 299-306. Search in Google Scholar

Moriguchi, K., Mizokami, T., & Morishige, K. (2022). Generation of a Robot Program and Determination of an Optimal Workpiece Placement Considering the Manipulability of Industrial Robots. Available at: https://www.jstage.jst.go.jp/article/ijat/16/6/16_870/_pdf. Search in Google Scholar

Liu, Y., & Wang, L. (2023). Research on automatic control algorithms for the motion of redundant robotic arms of industrial robots. Advanced Control for Applications, Vol. 5. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.116, Search in Google Scholar

Petrișor, S.M. (2010). Roboţi utilizaţi în aplicaţii special. Sibiu: Editura Academiei Forţelor Terestre. Search in Google Scholar

Zhang, J., Ding, F., Liu, J., Cao, L., & Li, K. (2022). Uncertainty Inverse Analysis of Positioning Accuracy for Error Sources Identification of Industrial Robots. IEEE Transactions on Reliability. Available at: https://ieeexplore.ieee.org/document/9934018, 1-11.Search in Google Scholar