Accès libre

On the exhaustive generation of discrete figures with connectivity constraints

À propos de cet article

Citez

[1] P. Bose, V. Dujmovic, F. Hurtado and P. Morin, Connectivity-preserving transformations of binary images, Comput. Vis. Image Underst., 113 (2009) 1027–1038. Search in Google Scholar

[2] Z. M. Du, F. Y. Ye, H. Shi and G. P. Zhu, A fast recovery method of 2D geometric compressed sensing signal, Circ. Syst. Signal Pr., 34 (2015) 1711–1724. Search in Google Scholar

[3] S. W. Golomb, Polyominoes, Charles Scribners’ Sons, 1965. Search in Google Scholar

[4] S. W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings, Princeton University Press, 1994.10.1515/9780691215051 Search in Google Scholar

[5] I. Jensen and A. J. Guttmann, Self-avoiding polygons on the square lattice, J. Phys. A, 32 (1999) 4867–4876. Search in Google Scholar

[6] M. Kobilarov, M. Desbrun, J. Marsden and G. Sukhatme, A discrete geometric optimal control framework for systems with symmetries, Proceedings of Robotics: Science and Systems (2007) Atlanta, GA, USA, June.10.15607/RSS.2007.III.021 Search in Google Scholar

[7] P. M. Lam, On Monte Carlo generation and study of anisotropy of lattice animals, J. Phys. A, 19 (1986) L155.10.1088/0305-4470/19/3/011 Search in Google Scholar

[8] J. L. Martin, Computer techniques for evaluating lattice constants, in: Domb, C., Green, M. S. (Eds.), Phase Transitions and Critical Phenomena, vol. 3, Academic Press, London, 1974, pp. 97—112. Search in Google Scholar

[9] S. J. Redner, A Fortran program for cluster enumeration, J. Stat. Phys., 29 (1982) 309–315. Search in Google Scholar

[10] T. Sunada, Topological Crystallography, Springer, 2013.10.1007/978-4-431-54177-6 Search in Google Scholar

[11] J. Vernay, GitHub Repository: discrete-figures, version 1.1.0 (2022), https://github.com/JVernay/discrete-figures. Search in Google Scholar