Accès libre

Numerical Study of the Scale Effect on Flow Around a Propeller Using the CFD Method

À propos de cet article

Citez

H. Yao and H. Zhang, “Numerical simulation of boundary-layer transition flow of a model propeller and the full-scale propeller for studying scale effects,” Journal of Marine Science and Technology, vol. 23, pp. 1004-1018, 2018. https://doi.org/10.1007/s00773-018-0528-4 Search in Google Scholar

S.-B. Müller, M. Abdel-Maksoud, and G. Hilbert, “Scale effects on propellers for large container vessels,” in First International Symposium on Marine Propulsors, Trondheim, 2009, pp. 1-9. Search in Google Scholar

A. Lungu, “Scale effects on a tip rake propeller working in open water,” Journal of Marine Science and Application, vol. 7, no. 11, p. 404, 2019. https://doi.org/10.3390/jmse7110404 Search in Google Scholar

V. Krasilnikov, J. Sun, and K. H. Halse, “CFD investigation in scale effect on propellers with different magnitude of skew in turbulent flow,” in First International Symposium on Marine Propulsors, Trondheim, 2009, pp. 25-40. Search in Google Scholar

X.-Q. Dong, W. Li, C.-J. Yang, and F. Noblesse, “RANSE-based simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller,” Journal of Ocean Engineering and Science, vol. 3, no. 3, pp. 186-204, 2018. https://doi.org/10.1016/j.joes.2018.05.001 Search in Google Scholar

A. Bhattacharyya, V. Krasilnikov, and S. Steen, “Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs,” Ocean Engineering, vol. 112, pp. 226-242, 2016. https://doi.org/10.1016/j.oceaneng.2015.12.024 Search in Google Scholar

M. Kraskowski, “CFD optimisation of the longitudinal volume distribution of a ship’s hull by constrained transformation of the sectional area curve,” Polish Maritime Research, vol. 29, no. 3, pp. 11-20, 2022. https://doi.org/10.2478/pomr-2022-0022 Search in Google Scholar

T.-H. Le, N. D. Anh, T. N. Tu, N. T. N. Hoa, and V. M. Ngoc, “Numerical investigation of length to beam ratio effects on ship resistance using RANSE method,” Polish Maritime Research, vol. 30, no. 1, pp. 13-24, 2023. https://doi.org/10.2478/pomr-2023-0002 Search in Google Scholar

T. Szelangiewicz and T. Abramowski, “Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics,” Polish Maritime Research, vol. 16, no. 4, pp. 3-8, 2009. https://doi.org/10.2478/v10012-008-0049-x Search in Google Scholar

[T. Q. Chuan, N. K. Phuong, T. N. Tu, M. Van Quan, N. D. Anh, and T.-H. Le, “Numerical study of effect of trim on performance of 12500DWT cargo ship using RANSE method,” Polish Maritime Research, vol. 29, no. 1, pp. 3-12, 2022. https://doi.org/10.2478/pomr-2022-0001 Search in Google Scholar

N. T. N. Hoa, B. N. Vu, N. T. Tran, N. M. Chien, and T. H. Le, “Numerical investigating the effect of water depth on ship resistance using RANS CFD method,” Polish Maritime Research, vol. 26, pp. 56-64, 2019. https://doi.org/10.2478/pomr-2019-0046 Search in Google Scholar

M. Visonneau, P. Queutey, and G. Deng, “Model and full-scale free-surface viscous flows around fully-appended ships,” in ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006: Citeseer. Search in Google Scholar

T. N. Tu, “Numerical simulation of propeller open water characteristics using RANSE method,” Alexandria Engineering Journal, vol. 58, no. 2, pp. 531-537, 2019. https://doi.org/10.1016/j.aej.2019.05.005 Search in Google Scholar

J. Felicjancik, S. Kowalczyk, K. Felicjancik, and K. Kawecki, “Numerical simulations of hydrodynamic open-water characteristics of a ship propeller,” Polish Maritime Research, vol. 23, no. 4, pp. 16-22, 2016. https://doi.org/10.1515/pomr-2016-0067 Search in Google Scholar

H. Nouroozi and H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,” Polish Maritime Research, vol. 27, no. 1, pp. 6-17, 2020. https://doi.org/10.2478/pomr-2020-0001 Search in Google Scholar

N. M. Nouri and S. Mohammadi, “Numerical investigation of the effects of camber ratio on the hydrodynamic performance of a marine propeller,” Ocean Engineering, vol. 148, pp. 632-636, 2018. https://doi.org/10.1016/j.oceaneng.2017.06.026 Search in Google Scholar

A. Zinati, M. J. Ketabdari, and H. Zeraatgar, “Effects of propeller fouling on the hydrodynamic performance of a marine propeller,” Polish Maritime Research, vol. 30, no. 4, pp. 61-73. https://doi.org/10.2478/pomr-2023-0059 Search in Google Scholar

T. N. Tu and N. M. Chien, “Comparison of different approaches for calculation of propeller open water characteristic using RANSE Method,” Naval Engineers Journal, vol. 130, no. 1, pp. 105-111, 2018. Search in Google Scholar

T. N. Tu, M. Kraskowski, N. M. Chien, V. T. Anh, D. L. Luu, and N. K. Phuong, “Numerical study on the influence of trim on ship resistance in trim optimization process,” Naval Engineers Journal, vol. 130, no. 4, pp. 133-142, 2018. Search in Google Scholar

T. N. Tu, D. D. Luu, N. T. H. Ha, N. T. T. Quynh, and N. M. Vu, “Numerical prediction of propeller-hull interaction characteristics using RANS method,” Polish Maritime Research, 2019. https://doi.org/10.2478/pomr-2019-0036 Search in Google Scholar

T.-H. Le et al., “Numerical investigation on the effect of trim on ship resistance by RANSE method,” Applied Ocean Research, vol. 111, p. 102642, 2021. https://doi.org/10.1016/j.apor.2021.102642 Search in Google Scholar

A. Sánchez-Caja, J. González-Adalid, M. Pérez-Sobrino, and T. Sipilä, “Scale effects on tip loaded propeller performance using a RANSE solver,” Ocean Engineering, vol. 88, pp. 607-617, 2014. https://doi.org/10.1016/j.oceaneng.2014.04.029 Search in Google Scholar

U. Barkmann, H.-J. Heinke, and L. Lübke, “Potsdam propeller test case (PPTC),” in Proceedings of the Second International Symposium on Marine Propulsors-SMP’11, 2011, pp. 36-38. Search in Google Scholar

https://www.sva-potsdam.de/en/ittc-benchmark/. Search in Google Scholar

J. Carlton, Marine propellers and propulsion. Elsevier, 2018. https://doi.org/10.1016/B978-0-7506-8150-6.X5000-1 Search in Google Scholar

S. Sun, C. Wang, C. Guo, Y. Zhang, C. Sun, and P. Liu, “Numerical study of scale effect on the wake dynamics of a propeller,” Ocean Engineering, vol. 196, p. 106810, 2020. https://doi.org/10.1016/j.oceaneng.2019.106810 Search in Google Scholar

A. Peters, U. Lantermann, and O. el Moctar, “Numerical prediction of cavitation erosion on a ship propeller in model-and full-scale,” Wear, vol. 408, pp. 1-12, 2018. https://doi.org/10.1016/j.wear.2018.04.012 Search in Google Scholar

F. Di Felice, “Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry,” Journal of Ship Research, vol. 48, no. 02, pp. 168-190, 2004. https://doi.org/10.5957/jsr.2004.48.2.168 Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais