Accès libre

Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect

À propos de cet article

Citez

1. L. Zhu, B.L. Li, A. Li, W.X. Ji, Y. Qian, X.C. Lu and Z. Huang. ‘Effects of fuel reforming on large-bore low-speed two-stroke dual fuel marine engine combined with EGR and injection strategy’. International Journal of Hydrogen Energy, 45, 2020. 29505-29517. doi: 10.1016/j.oceaneng.2019.01.026. Open DOISearch in Google Scholar

2. ICCT, The international maritime organization’s initial greenhouse gas strategy. Update Policy, 2018. 3–4. Search in Google Scholar

3. A. Halff, L. Younes and T. Boersma, ‘The likely implications of the new IMO standards on the shipping industry’. Energy Policy, 126, 2019. 277–286. doi: 10.1016/j.enpol.2018.11.033. Open DOISearch in Google Scholar

4. S.L. Wen, H. Lan, Y.Y. Hong, D.C. Yu, L.J. Zhang and P. Cheng. ‘Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system’. Applied Energy, 175, 2016. 158–167. doi: 10.1016/j.apenergy.2016.05.003. Open DOISearch in Google Scholar

5. F. Diab, H. Lan and S. Ali, ‘Novel comparison study between the hybrid renewable energy systems on land and on ship’. Renewable and Sustainable Energy Reviews, 63, 2016. 452–463. doi: 10.1016/j.rser.2016.05.053. Open DOISearch in Google Scholar

6. P.C. Pan, Y.W. Sun, C.Q. Yuan, X.P. Yan and X.J. Tang. ‘Research progress on ship power systems integrated with new energy sources: A review’. Renewable and Sustainable Energy Reviews, 144, 2021. 111048. doi: 10.1016/j.rser.2021.111048. Open DOISearch in Google Scholar

7. J.H. He, Y.H. Hu, J.J. Tang and S.Y. Xue. ‘Research on sail aerodynamics performance and sail-assisted ship stability’. Journal of Wind Engineering and Industrial Aerodynamics, 146, 2015. 81-89. doi: 10.1016/j.jweia.2015.08.005. Open DOISearch in Google Scholar

8. L. Talluri, D.K. Nalianda and E. Giuliani, ‘Techno economic and environmental assessment of Flettner rotors for marine propulsion’. Ocean Engineering, 154, 2018. 1–15. doi: 10.1016/j.oceaneng.2018.02.020. Open DOISearch in Google Scholar

9. N.J. Van Der Kolk, I. Akkerman, J.A. Keuning and R.H.M. Huijsmans. ‘Part 2: Simulation methodology and numerical uncertainty for RANS-CFD for the hydrodynamics of wind-assisted ships operating at leeway angles’. Ocean Engineering, 201, 2020. 107024. doi: 10.1016/j.oceaneng.2020.107024. Open DOISearch in Google Scholar

10. Y. Ma, H.X. Bi, M.Q. Hu, Y.Z. Zheng and L.X. Gan. ‘Hard sail optimization and energy efficiency enhancement for sail-assisted vessel’. Ocean Engineering, 173, 2019. 687–699. doi: 10.1016/j.oceaneng.2019.01.026. Open DOISearch in Google Scholar

11. R.H. Lu and J.W. Ringsberg. ‘Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology’. Ships and Offshore Structures, 15, 2020. 249-258. doi: https://doi.org/10.1080/17445302.2019.1612544. doi: 10.1080/17445302.2019.1612544. Open DOISearch in Google Scholar

12. F. Tillig and J.W. Ringsberg. ‘Design, operation and analysis of wind-assisted cargo ships’. Ocean Engineering, 211, 2020. Article ID 107603. doi: 10.1016/j.oceaneng.2020.107603. Open DOISearch in Google Scholar

13. I.S. Seddiek and N.R. Ammar. ‘Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers’. Environmental Science and Pollution Research, 28, 2021. 32695–32707. doi: 10.1007/s11356-021-12791-3.790501633630258 Open DOISearch in Google Scholar

14. S. Pezzotti, V.N. Mora, A.S. Andres and S. Franchini. ‘Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides’. Journal of Wind Engineering & Industrial Aerodynamics, 197, 2020. 104065. doi: 10.1016/j.jweia.2019.104065. Open DOISearch in Google Scholar

15. L.C. Correa, J.M. Lenz, C.G. Ribeiro and F.A. Farret. ‘Magnus Wind Turbine Emulator With MPPT by Cylinder Rotation Control’. Journal of Dynamic Systems, Measurement, and Control, 140, 2018. 101012. doi: 10.1115/1.4040212. Open DOISearch in Google Scholar

16. A. De Marco, S. Mancini, C. Pensa, G. Calise and F. De Luca. ‘Flettner rotor concept for marine applications: a systematic study’. International Journal of Rotating Machinery. 2016. 12. Article ID 3458750. doi: 10.1155/2016/3458750. Open DOISearch in Google Scholar

17. B.Y. Li, R. Zhang, B.S. Zhang, Q.Q. Yang and C. Guo. ‘An assisted propulsion device of vessel utilising wind energy based on Magnus effect’. Applied Ocean Research, 114 (2021), Article ID 102788. doi: 10.1016/j.apor.2021.102788. Open DOISearch in Google Scholar

18. G. Bordogna, S. Muggiasca, S. Giappino, M. Belloli, J.A. Keuning, R.H.M. Huijsmans and A.P. van ’t Veer. ‘Experiments on a Flettner rotor at critical and supercritical Reynolds numbers’. Journal of Wind Engineering and Industrial Aerodynamics, 188 (2019), 19–29. doi: 10.1016/j.jweia.2019.02.006. Open DOISearch in Google Scholar

19. G. Bordogna, S. Muggiasca, S. Giappino, M. Belloli, J.A. Keuning and R.H.M. Huijsmans. ‘The effects of the aerodynamic interaction on the performance of two Flettner rotors’. Journal of Wind Engineering and Industrial Aerodynamics, 196, 2020. 104024. doi: 10.1016/j.jweia.2019.104024. Open DOISearch in Google Scholar

20. B.Y. Li, R. Zhang, Y.J. Li, B.S. Zhang and C. Guo. ‘Study of a new type of Flettner rotor in merchant ships’. Polish Maritime Research, 109 (2021), 28-41. doi: 10.2478/pomr-2021-0003. Open DOISearch in Google Scholar

21. J. Seifert. ‘A review of the Magnus effect in aeronautics’. Progress in Aerospace Sciences, 55, 2012. 17-45. doi: 10.1016/j.paerosci.2012.07.001. Open DOISearch in Google Scholar

22. X.Y. Liu, Y.X. Wang, J.J. Liang and S. Wang. ‘CFD Analysis of Aerodynamic Characteristics of Ship’s Wind-Assisted Rotor Sail. Navigation of China’, doi: 1000-4653, 2019.04-0046-05. Open DOISearch in Google Scholar

23. X.Y. Lu. ‘Study on aerodynamic Performance of Vertical Magnus Wind Turbine’. University of Xiang Tan, May 2019. Search in Google Scholar

24. A. Sedaghat, I. Samani, M. Ahmadi-Baloutaki, M.E.H. Assad and M. Gaith. ‘Computational study on novel circulating aerofoils for use in Magnus wind turbine blades’. Energy, 91, 2015. 393-403. doi: 10.1016/j.energy.2015.08.058. Open DOISearch in Google Scholar

25. N.R. Ammar and I.S. Seddiek. ‘Enhancing energy efficiency for new generations of containerized shipping’. Ocean Engineering, 215, 2020. 107887. doi: 10.1016/j.oceaneng.2020.107887. Open DOISearch in Google Scholar

26. M. Traut, P. Gilbert, C. Walsh, A. Bows, A. Filippone, P. Stansby and R. Wood. ‘Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes’. Applied Energy, 113, 2014. 362–372.10.1016/j.apenergy.2013.07.026 Search in Google Scholar

27. D. Moreira, N. Mathias, T. Morais. ‘Dual flapping foil system for propulsion and harnessing wave energy: A 2D parametric study for unaligned foil configurations’. Ocean Engineering, 215 (2020), 107875. doi: 10.1016/j.oceaneng.2020.107875. Open DOISearch in Google Scholar

28. D. Wang and PL-F. Liu. ‘An ISPH with k–ε closure for simulating turbulence under solitary waves’. Coastal Engineering, 157, 2020. 103657. doi: 10.1016/j.coastaleng.2020.103657. Open DOISearch in Google Scholar

29. B.S. Zhang, B.W. Song, Z.Y. Mao, W.L. Tian, B.Y. Li and B. Li. ‘A novel parametric modeling method and optimal design for savonius wind turbines’. Energies. 10 (2017), 301. doi: 10.3390/en10030301. Open DOISearch in Google Scholar

30. D.J. Wang, K. Liu, P. Huo, S.Q. Qiu, J.W. Ye and F.L. Liang. ‘Motions of an unmanned catamaran ship with fixed tandem hydrofoils in regular head waves’. Journal of Marine Science and Technology. 24, 2019. 705-719. doi: 10.1007/s00773-018-0583-x. Open DOISearch in Google Scholar

31. C. Badalamenti and S.A. Prince. ‘Effects of endplates on a rotating cylinder in crossflow’. In Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 2008.10.2514/6.2008-7063 Search in Google Scholar

32. A. De Marco, S. Mancini, C. Pensa, ‘Preliminary analysis for marine application of Flettner rotors’ in Proceedings of the 2nd International Symposium on Naval Architecture and Maritime (INT-NAM ’14), Istanbul, Turkey, October 2014. Search in Google Scholar

33. A. De Marco, S. Mancini, C. Pensa, R. Scognamiglio and L. Vittiello. ‘Marine application of Flettner rotors: numerical study on a systematic variation of geometric factor by doe approach’. In Proceedings of the 6th International Conference on Computational Methods in Marine Engineering (MARINE’15), Rome, Italy, June 2015. Search in Google Scholar

34. I.S. Seddiek and N.R. Ammar. ‘Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers’. Environmental Science and Pollution Research, 28, 2021. 32695–32707. doi: 10.1007/s11356-021-12791-3.790501633630258 Open DOISearch in Google Scholar

eISSN:
2083-7429
Langue:
Anglais