Accès libre

The Influence of Selected Strain-Based Failure Criteria on Ship Structure Damage Resulting from a Collision with an Offshore Wind Turbine Monopile

À propos de cet article

Citez

1. L. Ramirez, D. Fraile, and G. Brindley, “Offshore wind in Europe: Key trends and statistics 2019,” 2019. Search in Google Scholar

2. L. Ramirez, D. Fraile, and G. Brindley, “Offshore wind in Europe: Key trends and statistics 2020,” 2021. Search in Google Scholar

3. EMSA, “Marine Casualties and Incidents PRELIMINARY ANNUAL OVERVIEW OF MARINE CASUALTIES AND INCIDENTS 2014-2020,” no. April, 2021. Search in Google Scholar

4. L. Junlai, X. Yonghe, W. Weiguo, and Z. Chi, “Analysis of the Dynamic Response of Offshore Floating Wind Power Platforms in Waves,” Polish Marit. Res., vol. 27, no. 4, pp. 17–25, 2020. doi: 10.2478/pomr-2020-006210.2478/pomr-2020-0062 Search in Google Scholar

5. A. Karczewski and Ł. Piątek, “The influence of the cuboid float’s parameters on the stability of a floating building,” Polish Marit. Res., vol. 27, no. 107, pp. 16–21, 2020. doi: 10.2478/pomr-2020-004210.2478/pomr-2020-0042 Search in Google Scholar

6. K. Niklas and A. Karczewski, “Determination of seakeeping performance for a case study vessel by the strip theory method,” Polish Marit. Res., vol. 27, no. 108, pp. 4–16, 2020. doi: 10.2478/pomr-2020-006110.2478/pomr-2020-0061 Search in Google Scholar

7. F. Wang and N. Chen, “Dynamic response analysis of drill pipe considering horizontal movement of platform during installation of subsea production tree,” Polish Marit. Res., vol. 27, no. 3, pp. 22–30, 2020. doi: 10.2478/pomr-2020-004310.2478/pomr-2020-0043 Search in Google Scholar

8. J.T. Wu, J.H. Chen, C.Y. Hsin, and F.C. Chiu, “Dynamics of the FKT System with Different Mooring Lines,” Polish Marit. Res., vol. 26, no. 1, pp. 20–29, 2019. doi: 10.2478/pomr-2019-000310.2478/pomr-2019-0003 Search in Google Scholar

9. E. Mieloszyk, M. Abramski, and A. Milewska, “CFGFRPT Piles with a Circular Cross-Section and their Application in Offshore Structures,” Polish Marit. Res., vol. 26, no. 3, pp. 128–137, 2019. doi: 10.2478/pomr-2019-005310.2478/pomr-2019-0053 Search in Google Scholar

10. W. Litwin, W. Leśniewski, D. Piątek, and K. Niklas, “Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship,” Energies, vol. 12, no. 9, p. 1675, 2019.10.3390/en12091675 Search in Google Scholar

11. V.S. Blintsov, K.S. Trunin, and W. Tarełko, “Determination of Additional Tension in Towed Streamer Cable Triggered by Collision with Underwater Moving Object,” Polish Marit. Res., vol. 27, no. 2, pp. 58–68, 2020. doi: 10.2478/pomr-2020-002710.2478/pomr-2020-0027 Search in Google Scholar

12. K. Niklas and H. Pruszko, “Full scale CFD seakeeping simulations for case study ship redesigned from V-shaped bulbous bow to X-bow hull form,” Appl. Ocean Res., vol. 89, pp. 188–201, Aug. 2019.10.1016/j.apor.2019.05.011 Search in Google Scholar

13. F. Biehl, “Collision Safety Analysis of Offshore Wind Turbines,” 4th LSDYNA Eur. Conf., pp. 27–34, 2005. Search in Google Scholar

14. K. Niklas, “Strength analysis of a large-size supporting structure for an offshore wind turbine,” Polish Marit. Res., vol. 24, pp. 156–165, 2017. doi: 10.1515/pomr-2017-003410.1515/pomr-2017-0034 Search in Google Scholar

15. P. Dymarski, “Design of Jack-Up Platform for 6 MW Wind Turbine: Parametric Analysis Based Dimensioning of Platform Legs,” Polish Marit. Res., vol. 26, no. 2, pp. 183–197, 2019. doi: 10.2478/pomr-2019-003810.2478/pomr-2019-0038 Search in Google Scholar

16. B. Rozmarynowski, “Spectral Dynamic Analysis of A Stationary Jack-Up Platform,” Polish Marit. Res., vol. 26, no. 1, 2019. doi: 10.2478/pomr-2019-000510.2478/pomr-2019-0005 Search in Google Scholar

17. WindEurope, “Offshore wind in Europe - Key trends and statistics 2020,” WindEurope, vol. 3, no. 2, pp. 14–17, 2021.10.1016/S1471-0846(02)80021-X Search in Google Scholar

18. N. Ren and J. Ou, “Dynamic numerical simulation for ship-OWT collision,” Proc. 2009 8th Int. Conf. Reliab. Maintainab. Safety, ICRMS 2009, no. July, pp. 1003–1007, 2009. Search in Google Scholar

19. E. Homayoun, H. Ghassemi, and H. Ghafari, “Power Performance of the Combined Monopile Wind Turbine and Floating Buoy with Heave-Type Wave Energy Converter,” Polish Marit. Res., vol. 26, no. 3, pp. 107–114, 2019. doi: 10.2478/pomr-2019-005110.2478/pomr-2019-0051 Search in Google Scholar

20. J.R.A. Tomporowski, A. Al-Zubiedy, J. Flizikowski, W. Kruszelnicka, P. Bałdowska-Witos, “Analysis of the Project of innovative floating turbine,” Polish Marit. Res., vol. 26, no. 4, pp. 121–183, 2020. doi: 10.2478/pomr-2019-007410.2478/pomr-2019-0074 Search in Google Scholar

21. A. Bela, L. Buldgen, P. Rigo, and H. Le Sourne, “Numerical crashworthiness analysis of an offshore wind turbine monopile impacted by a ship,” Anal. Des. Mar. Struct. - Proc. 5th Int. Conf. Mar. Struct. MARSTRUCT 2015, no. 2013, pp. 661–669, 2015. Search in Google Scholar

22. A. Bela, H. Le Sourne, L. Buldgen, and P. Rigo, “Ship collision analysis on offshore wind turbine monopile foundations,” Mar. Struct., vol. 51, pp. 220–241, 2017.10.1016/j.marstruc.2016.10.009 Search in Google Scholar

23. H. Jia, S. Qin, R. Wang, Y. Xue, D. Fu, and A. Wang, “Ship collision impact on the structural load of an offshore wind turbine,” Glob. Energy Interconnect., vol. 3, no. 1, pp. 43–50, 2020.10.1016/j.gloei.2020.03.009 Search in Google Scholar

24. E. Lehmann and J. Peschmann, “Energy absorption by the steel structure of ships in the event of collisions,” Mar. Struct., vol. 15, no. 4–5, pp. 429–441, 2002.10.1016/S0951-8339(02)00011-4 Search in Google Scholar

25. K. Niklas and J. Kozak, “Experimental investigation of Steel-Concrete-Polymer composite barrier for the ship internal tank construction,” Ocean Eng., vol. 111, pp. 449–460, 2016.10.1016/j.oceaneng.2015.11.030 Search in Google Scholar

26. Ringsberg, J., Amdahl, J., Chen, B., Cho, S.-R., Ehlers, S., Hu, Z., Kubiczek, J., Kõrgesaar, M., Liu, B., Marinatos, J., Niklas, K., Parunov, J., Quinton, B., Rudan, S., Samuelides, M., Soares, C., Tabri, K., Villavicencio, R., Yamada, Y., Yu, Z., & Zhang, S., “MARSTRUCT benchmark study on nonlinear FE simulation of an experiment of an indenter impact with a ship side-shell structure,” Mar. Struct., vol. 59, pp. 142–157, 2018.10.1016/j.marstruc.2018.01.010 Search in Google Scholar

27. A. AbuBakar and R.S. Dow, “The impact analysis characteristics of a ship’s bow during collisions,” Eng. Fail. Anal., vol. 100, no. August 2018, pp. 492–511, 2019.10.1016/j.engfailanal.2019.02.050 Search in Google Scholar

28. K. Niklas, “Numerical calculations of behaviour of ship double-bottom structure during grounding,” Polish Marit. Res., vol. 15, no. SUPPL. 1, 2008.10.2478/v10012-007-0073-2 Search in Google Scholar

29. M.A.G. Calle and M. Alves, “A review-analysis on material failure modelling in ship collision,” Ocean Eng., vol. 106, pp. 20–38, 2015.10.1016/j.oceaneng.2015.06.032 Search in Google Scholar

30. O. Kitamura, “FEM approach to the simulation of collision and grounding damage,” Mar. Struct., vol. 15, no. 4–5, pp. 403–428, 2002.10.1016/S0951-8339(02)00010-2 Search in Google Scholar

31. DNVGL, “DNV-RP-C208: Determination of Structural Capacity by Non-linear FE analysis Methods,” 2019. Search in Google Scholar

32. J.L. Martinez, J.C.R. Cyrino, and M.A. Vaz, “FPSO collision local damage and ultimate longitudinal bending strength analyses,” Lat. Am. J. Solids Struct., vol. 17, no. 2, pp. 1–19, 2020.10.1590/1679-78255952 Search in Google Scholar

33. G. Wang, K. Arita, and D. Liu, “Behavior of a double hull in a variety of stranding or collision scenarios,” Mar. Struct., vol. 13, no. 3, pp. 147–187, 2000.10.1016/S0951-8339(00)00036-8 Search in Google Scholar

34. S. Yagi, H. Kumamoto, O. Muragishi, Y. Takaoka, and T. Shimoda, “A study on collision buffer characteristic of sharp entrance angle bow structure,” Mar. Struct., vol. 22, no. 1, pp. 12–23, 2009.10.1016/j.marstruc.2008.06.006 Search in Google Scholar

35. S. Ehlers, “The influence of the material relation on the accuracy of collision simulations,” Mar. Struct., vol. 23, no. 4, pp. 462–474, 2010.10.1016/j.marstruc.2010.12.002 Search in Google Scholar

36. S. Ehlers, J. Broekhuijsen, H.S. Alsos, F. Biehl, and K. Tabri, “Simulating the collision response of ship side structures: A failure criteria benchmark study,” Int. Shipbuild. Prog., vol. 55, no. 1–2, pp. 127–144, 2008. Search in Google Scholar

37. Standards Norway, “NORSOK Standard - Design of steel structure N-004, Rev.3,” 2013. Search in Google Scholar

38. DNVGL, “DNVGL-RP-C204 - Design against Accidental Loads,” 2017. Search in Google Scholar

39. M. Scharrer, L. Zhang, and E.D. Egge, “Final report MTK0614, Collision calculations in naval design systems, Report Nr. ESS 2002.183,” Hamburg, 2002. Search in Google Scholar

40. DNVGL, “DNV-RP-C208: Determination of Structural Capacity by Non-linear FE analysis Methods,” 2013. Search in Google Scholar

41. S. Zhang, “The mechanics of ship collisions,” Technical University of Danemark, 1999. Search in Google Scholar

42. Verband Deutscher Ingenieure, “Systematic calculation of high duty bolted joints joints with one cylindrical bolt,” Berlin, 2003. Search in Google Scholar

43. O. Ozgur, “Numerical Assessment of FPSO Platform Behaviour in Ship Collision,” Trans. Marit. Sci., vol. 9, no. 2, 2020.10.7225/toms.v09.n02.003 Search in Google Scholar

44. T. S. Bøe, “Analysis and Design of Stiffened Columns in Offshore Floating Platforms Subjected to Supply Vessel Impacts,” Norwegian University of Science and Technology, 2018. Search in Google Scholar

45. M.P. Mujeeb-Ahmed, S.T. Ince, and J.K. Paik, “Computational models for the structural crashworthiness analysis of a fixed-type offshore platform in collisions with an offshore supply vessel,” Thin-Walled Struct., vol. 154, no. June, p. 106868, 2020. Search in Google Scholar

46. Livermore Software Technology, “LS-DYNA - KEYWORD USER’S MANUAL, VOLUME II Material Models,” 2020. Search in Google Scholar

47. Y.G. Ko, S.J. Kim, J.M. Sohn, and J.K. Paik, “A practical method to determine the dynamic fracture strain for the nonlinear finite element analysis of structural crashworthiness in ship–ship collisions,” Ships Offshore Struct., vol. 13, no. 4, 2018.10.1080/17445302.2017.1405584 Search in Google Scholar

48. J. Travanca and H. Hao, “Energy dissipation in high-energy ship-offshore jacket platform collisions,” Mar. Struct., vol. 40, pp. 1–37, 2015.10.1016/j.marstruc.2014.10.008 Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais