Accès libre

Evaluation of Effectiveness of Waterjet Propulsor for a Small Underwater Vehicle

À propos de cet article

Citez

1. Y. Shen et al., ‘Design of Novel Shaftless Pump-Jet Propulsor for Multi-Purpose Long-Range and High-Speed Autonomous Underwater Vehicle’, IEEE Trans. Magn., vol. 52, no. 7, 2016, doi: 10.1109/TMAG.2016.2522822.10.1109/TMAG.2016.2522822 Search in Google Scholar

2. L. Zhang, J. N. Zhang, Y. C. Shang, G. X. Dong, and W. M. Chen, ‘A Practical approach to the assessment of waterjet propulsion performance: The case of a waterjet-propelled trimaran’, Polish Marit. Res., vol. 26, no. 4, 2020, doi: 10.2478/pomr-2019-0063.10.2478/pomr-2019-0063 Search in Google Scholar

3. L. Jian, L. Xiwen, Z. Zuti, L. Xiaohui, and Z. Yuquan, ‘Numerical investigation into effects on momentum thrust by nozzle’s geometric parameters in water jet propulsion system of autonomous underwater vehicles’, Ocean Eng., vol. 123, 2016, doi: 10.1016/j.oceaneng.2016.07.041.10.1016/j.oceaneng.2016.07.041 Search in Google Scholar

4. S. Wang, M. Fu, Y. Wang, and L. Zhao, ‘A Multi-Layered Potential Field Method for Water-Jet Propelled Unmanned Surface Vehicle Local Path Planning with Minimum Energy Consumption’, Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0015.10.2478/pomr-2019-0015 Search in Google Scholar

5. W. Próchnicki, Analysis of the ship’s jet propulsion capabilities. Gdansk: Politechnika Gdanska, 2001. Search in Google Scholar

6. L. Rowinski, ‘Motion requirements of single mission mine counter submersible craft, Underwater Defence Technology Conference and Exhibition, Malmo, Sweden’, 2003. Search in Google Scholar

7. L. Rowinski, ‘Articulated warhead mine disposal vehicle, Underwater Defence Technology Conference and Exhibition “UDT Europe 2008”, Glasgow, Great Britain’, 2008. Search in Google Scholar

8. ‘The Specialist Committee on Validation of Waterjet Test Procedures’, in Proceedings of the 24th ITTC, 2005, p. Volume II. Search in Google Scholar

9. F. M. White, ‘Fluid Mechanics seventh edition by Frank M. White’, Power, 2011. Search in Google Scholar

10. F. O. M. Faltinsen, Hydrodynamics of High-Speed Maritime Vehicles. Cambridge University Press, 2005.10.1017/CBO9780511546068 Search in Google Scholar

11. Tesch Krzysztof, Fluid Mechanics. Politechnika Gdanska, 2008. Search in Google Scholar

12. H. T. Schlichting, Boundary Layer Theory. McGraw-Hill, 1979. Search in Google Scholar

13. ‘Report of the Waterjets Group, Proceedings of the 21st International Towing Tank Conference, ITTC’96’, Trondheim, Norway, 1996. Search in Google Scholar

14. T. J. C. Van Terwisga, ‘Waterjet-Hull interaction, PhD. Thesis’, 1996. Search in Google Scholar

15. M. C. Kim and H. H. Chun, ‘Experimental Investigation into the performance of the Axial-Flow-Type Waterjet according to the Variation of Impeller Tip Clearance’, Ocean Eng., vol. 34, no. 2, 2007, doi: 10.1016/j.oceaneng.2005.12.011.10.1016/j.oceaneng.2005.12.011 Search in Google Scholar

16. C. Lubert, ‘On some recent applications of the coanda effect’, in International Journal of Acoustics and Vibrations, 2011, vol. 16, no. 3, doi: 10.20855/ijav.2011.16.3286.10.20855/ijav.2011.16.3286 Search in Google Scholar

17. J. Arnold; G.J. Nijhuis, Selection design and operation of rotodynamic pumps. The Nijhuis Pompen. 2005. Search in Google Scholar

18. L. F. Moody, ‘The Propeller Type Turbine’, Trans. Am. Soc. Civ. Eng., 1925.10.1061/TACEAT.0003618 Search in Google Scholar

19. H. H. Anderson, ‘Theory of Centrifugal Pumps’, in Centrifugal Pumps, 1993, pp. 36–43.10.1016/B978-0-85461-076-1.50010-X Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais