À propos de cet article

Citez

1. Revised MARPOL Annex VI: Regulations for the prevention of air pollution from ships and NOx technical code London: IMO Marine Environmental Protection Committee (MEPC), IMO, 2008 Search in Google Scholar

2. Z. Yang, Q. Tan, and P. Geng, ‘Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulpur diesel fuel’, Polish Maritime Research. 2019, 26(1), 153-161. Search in Google Scholar

3. L. Yang, Y. Cai, Y. Wei, and S. Huang, ‘Choice of technology for emission control in port areas: A supply chain perspective’, Journal of Cleaner Production. 2019, 240, DOI: 10.1016/j.jclepro.2019.118105.10.1016/j.jclepro.2019.118105 Search in Google Scholar

4. W. Zeńczak and A. K. Gromadzińska, ‘Preliminary analysis of the use of solid biofuels in a ship’s power system’, Polish Maritime Research. 2020, 27(4), 67-79. Search in Google Scholar

5. S.-I. Park, S.-K. Kim, and J. K. Paik Freng, ‘Safety-zone layout design for a floating LNG-Fueled power plant in bunkering process’, Ocean Engineering. 2020, 196, DOI: 10.1016/j.oceaneng.2019.106774.10.1016/j.oceaneng.2019.106774 Search in Google Scholar

6. J. B. Guinée et al., ‘Life cycle assessment: past, present, and future’, Environmental Science & Technology. 2011, 45(1), 90. Search in Google Scholar

7. F. Zheng, F. Gu, W. Zhang, and J. Guo, ‘Is bicycle sharing an environmental practice? Evidence from a life cycle assessment based on behavioural surveys’, Sustainability. 2019, 11(6), DOI: 10.3390/su11061550.10.3390/su11061550 Search in Google Scholar

8. A. Tomporowski, I. Piasecka, J. Flizikowski, R. Kasner, and K. Bieliński, ‘Comparison analysis of blade life cycles of land-based and offshore wind power plants’, Polish Maritime Research. 2018, 25(97), 225-233, DOI: 10.2478/pomr-2018-0046.10.2478/pomr-2018-0046 Search in Google Scholar

9. X. Wu et al., ‘Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China’, Journal of Cleaner Production. 2017, 142, 3236-3242, DOI: 10.1016/j. jclepro.2016.10.146. Search in Google Scholar

10. T. A. S. Lopes, L. M. Queiroz, E. A. Torres, and A. Kiperstok, ‘Low complexity waste-water treatment process in developing countries: A LCA approach to evaluate environmental gains’, Sci Total Environ. 2020, 720, 137593, DOI: 10.1016/j.scitotenv.2020.137593.10.1016/j.scitotenv.2020.13759332146399 Search in Google Scholar

11. J. Ling-Chin and A. P. Roskilly, ‘A comparative life cycle assessment of marine power systems’, Energy Conversion & Management. 2016, 127, 477-493. Search in Google Scholar

12. S. S. Hwang et al., ‘Life cycle assessment of alternative ship fuels for coastal ferry operating in Republic of Korea’, Journal of Marine Science and Engineering. 2020, 8(9), DOI: 10.3390/jmse8090660.10.3390/jmse8090660 Search in Google Scholar

13. ISO 14041: Environmental management — life cycle assessment — goal and scope definition — inventory analysis, H. J. Klüppel, 1998. Search in Google Scholar

14. ISO 14042 Environmental management • Life cycle assessment • life cycle impact assessment, S. O. Ryding, 1999. Search in Google Scholar

15. ISO 14043: Environmental management · life cycle assessment · life cycle interpretation, H. Lecouls, 1999. Search in Google Scholar

16. H. E. Lindstad, C. F. Rehn, and G. S. Eskeland, ‘Sulphur abatement globally in maritime shipping’, Transportation Research Part D: Transport and Environment. 2017, 57, 303-313, DOI: 10.1016/j.trd.2017.09.028.10.1016/j.trd.2017.09.028 Search in Google Scholar

17. S. R. Sharvini, Z. Z. Noor, C. S. Chong, L. C. Stringer, and D. Glew, ‘Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies’, Energy. 2020, 191, 116513.1-116513.8, DOI: 10.1016/j.energy.2019.116513.10.1016/j.energy.2019.116513 Search in Google Scholar

18. Lamas et al., ‘Numerical model of SO2 scrubbing with seawater applied to marine engines’, Polish Maritime Research. 2016, 23(90), 42-4710.1515/pomr-2016-0019 Search in Google Scholar

19. D. Flagiello, A. Erto, A. Lancia, and F. Di Natale, ‘Experimental and modelling analysis of seawater scrubbers for sulphur dioxide removal from flue-gas’, Fuel. 2018, 214, 254-263, DOI: 10.1016/j.fuel.2017.10.098.10.1016/j.fuel.2017.10.098 Search in Google Scholar

20. A. Pajdak, ‘The effect of structure modification of sodium compounds on the SO2 and HCl removal efficiency from fumes in the conditions of circulating fluidised bed’, Chemical and Biochemical Engineering Quarterly. 2017, 31(3), 261-273, DOI: 10.15255/cabeq.2015.2305.10.15255/CABEQ.2015.2305 Search in Google Scholar

21. Y. Zhu et al., ‘Shipboard trials of magnesium-based exhaust gas cleaning system’, Ocean Engineering. 2016, 128, 124-131, DOI: 10.1016/j.oceaneng.2016.10.004.10.1016/j.oceaneng.2016.10.004 Search in Google Scholar

22. Q. Liu, M. Sun, T. Zhang, and Y. Zhu, ‘Enhanced oxidation of MgSO3 during desulphurisation by a novel spray method in magnesium-based seawater exhaust gas clean system’, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2017, 231(4), 871-876, DOI: 10.1177/1475090216687437.10.1177/1475090216687437 Search in Google Scholar

23. M. Goedkoop, R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. Van Zelm, (2009), ‘ReCiPe 2008 - A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level’, Report I: Characterisation. Vol. 1. Ministerie van VROM. Den Haag| Search in Google Scholar

24. M. A. J. Huijbregts et al., ‘ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level’, The International Journal of Life Cycle Assessment. 2016, 22(2), 138-147, DOI: 10.1007/s11367-016-1246-y.10.1007/s11367-016-1246-y Search in Google Scholar

25. Y. H. Dong and S. T. Ng, ‘Comparing the midpoint and endpoint approaches based on ReCiPe—a study of commercial buildings in Hong Kong’, The International Journal of Life Cycle Assessment. 2014, 19(7), 1409-1423, DOI: 10.1007/s11367-014-0743-0.10.1007/s11367-014-0743-0 Search in Google Scholar

26. W. Shi et al., ‘Environmental effect of current desulfphurisation technology on fly dust emission in China’, Renewable and Sustainable Energy Reviews. 2017, 72, 1-9, DOI: 10.1016/j.rser.2017.01.033.10.1016/j.rser.2017.01.033 Search in Google Scholar

eISSN:
2083-7429
Langue:
Anglais