Accès libre

Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition

À propos de cet article

Citez

1. Andreau C., Ferdi F., Ville R. et al.: A method for determination of elastohydrodynamic behavior of line shafting bearings in their environment. In Proceedings of ASME/STLE International Joint Tribology Conference, San Diego, 2007. DOI:10.1115/IJTC2007-44056.10.1115/IJTC2007-44056Open DOISearch in Google Scholar

2. Batrak Y.: New CAE package for propulsion train calculations. International conference on computer applications in shipbuilding, 3, Vol. 2., (2009). pp. 187–192.10.3940/rina.iccas.2009.47Search in Google Scholar

3. Batrak Y. A., Shestopal V. P., Batrak R. Y.: Propeller hydrodynamic loads in relation to propulsion shaft alignment and vibration calculations. Proceedings of the Propellers/Shafting Symposium., 2012.10.5957/PSS-2012-010Search in Google Scholar

4. Byrd R. H., Hribar M.E., Nocedal J.: An interior point algorithm for large-scale nonlinear programming. SIAM J Optimization, 9(4), (1999), pp. 877–900. DOI:10.1137/S1052623497325107.10.1137/S1052623497325107Open DOISearch in Google Scholar

5. de Kraker A., Ostayena R. A. J. and Rixen D. J.: Calculation of Stribeck curves for (water) lubricated journal bearings. Tribology International, 40, (2007), pp. 459–469. DOI:10.1016/j.triboint.2006.04.012.10.1016/j.triboint.2006.04.012Open DOISearch in Google Scholar

6. Gurr C., Rulfs H.: Influence of transient operating conditions on propeller shaft bearings. Journal of Marine Engineering and Technology, 7(2) (2008), pp. 3–11. DOI:10.1080/20464177.2008.11020209.10.1080/20464177.2008.11020209Open DOISearch in Google Scholar

7. Hirani H., Rao T. V., Athre, K. et al.: Rapid performance evaluation of journal bearings. Tribology International, 30 (11) (1997), pp. 825–834. DOI:10.1016/S0301-679X(97)00066-210.1016/S0301-679X(97)00066-2Open DOISearch in Google Scholar

8. Hutchinson J. R.: Shear coefficients for Timoshenko beam theory. Journal of Applied Mechanics, 68(1), (2001), pp. 87-92. coefficientsfortimoshenkobeamtheory.10.1115/1.1349417Search in Google Scholar

9. Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, Vol 4, (1995), pp. 1942–1948. DOI:10.1109/ICNN.1995.488968.10.1109/ICNN.1995.488968Open DOISearch in Google Scholar

10. Litwin W.: Water-lubricated bearings of ship propeller shafts - Problems, experimental tests and theoretical investigations. Polish Maritime Research, 4(62), Vol 16, (2009), pp. 42–50.10.2478/v10012-008-0055-zSearch in Google Scholar

11. Litwin W.: Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties. Polish Maritime Research, 4(67), Vol 17, (2010), pp. 39–45.10.2478/v10012-010-0034-zSearch in Google Scholar

12. Mourelatos Z.P., Parsons M. G.: Finite-element analysis of elastohydrodynamic stern bearings. SNAME Transactions, 93(11), (1985), pp. 225–259.Search in Google Scholar

13. Poli R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008. DOI:10.1155/2008/685175.10.1155/2008/685175Open DOISearch in Google Scholar

14. Przemieniecki J. S.: Theory of matrix structural analysis, Dover Publications Inc., New York, 1968.Search in Google Scholar

15. Segerlind L. J. (1976). Applied Finite Element Analysis, 1 ed., John Wiley and Sons Inc., New York/London/Sydney/Toronto.Search in Google Scholar

16. ShaftDesigner – the shaft calculation software (2018). Retrieved from http://www.shaftdesigner.com/.Search in Google Scholar

17. ShaftDesigner – the shaft calculation software by IMT (2018). Retrieved from http://shaftsoftware.com/.Search in Google Scholar

18. Shi Y., Eberhart R. A.: Modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, pp. 69–73. DOI:10.1109/ICEC.1998.699146.10.1109/ICEC.1998.699146Open DOISearch in Google Scholar

19. Stachowiak G. W., Batchelor A. W.: Engineering tribology, Butterworth Heinemann. 2001.Search in Google Scholar

20. Vulic N.: Advanced shafting alignment: Behaviour of shafting in operation. Brodogradnja, 52, (2004), pp. 203–212.Search in Google Scholar

21. Waltz R., Morales J., Nocedal J. et al.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), (2006), pp. 391–408. DOI:10.1007/s10107-004-0560-5.10.1007/s10107-004-0560-5Open DOISearch in Google Scholar

22. Wright M. H.: The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bulletin of the American Mathematical Society, 42, (2005), pp. 39–56.10.1090/S0273-0979-04-01040-7Search in Google Scholar

23. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part I: determination of friction coefficients and film thickness ratios. 68(3), (2016), pp. 404–415. DOI: 10.1108/ILT-10-2015-014610.1108/ILT-10-2015-0146Open DOISearch in Google Scholar

24. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part II: further insight into the film thickness ratio lambda. Industrial Lubrication and Tribology, 68(3), (2016), pp. 416–429. DOI: 10.1108/ILT-10-2015-014710.1108/ILT-10-2015-0147Open DOISearch in Google Scholar

25. Xing H., Wu Q., Wu Z. et al.: Elastohydrodynamic lubrication analysis of marine sterntube bearing based on multi-body dynamics. In 2012 International Conference on Future Energy, Environment, and Materials, 2012, pp. 1046–1051. DOI:10.1016/j.egypro.2012.01.167.10.1016/j.egypro.2012.01.167Open DOISearch in Google Scholar

eISSN:
2083-7429
Langue:
Anglais