À propos de cet article

Citez

Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. IEEE Access. 2018;6:9375–9389. Search in Google Scholar

Gulati A, Balasubramanya R. Lung Imaging. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558976/ Search in Google Scholar

Mumcuoglu EU, Prescott J, Baker BN, et al. “Image analysis for cystic fibrosis: Automatic lung airway wall and vessel measurement on CT images,” in Engineering in Medicine and Biology Society, Annual International Conference of the IEEE. Minneapolis (MN), September 3-6, 2009. Search in Google Scholar

Mumcuoglu EU, Long FR, Castile RG, et al. Image analysis for cystic fibrosis: computer-assisted airway wall and vessel measurements from low-dose, limited scan lung CT images. J Digit Imaging 2013;26(1):82–96. Search in Google Scholar

Naseri Z, Sherafat S, Abrishami Moghaddam H, et al. Semi-automatic methods for airway and adjacent vessel measurement in bronchiectasis patterns in lung HRCT images of cystic fibrosis patients. J Digit Imaging 2018;31(5):727–37. Search in Google Scholar

Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, Erickson BJ. A Survey of Deep-Learning Applications in Ultra-sound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. J Am Coll Radiol. 2019 Sep;16(9 Pt B):1318-1328. doi: 10.1016/j.jacr.2019.06.004. PMID: 31492410. Search in Google Scholar

Gao X, Lv Q, Hou S. Progress in the Application of Portable Ultrasound Combined with Artificial Intelligence in Pre-Hospital Emergency and Disaster Sites. Diagnostics (Basel). 2023 Nov 6;13(21):3388. doi: 10.3390/diagnostics13213388. PMID: 37958284; PMCID: PMC10649742. Search in Google Scholar

Wang F, Mao R, Yan L, Ling S, Cai Z. A deep learning-based approach for rectus abdominis segmentation and distance measurement in ultrasonography. Front Physiol. 2023 Sep 6;14:1246994. doi: 10.3389/fphys.2023.1246994. PMID: 37736487; PMCID: PMC10509763. Search in Google Scholar

Liu B, Chi W, Li X, et al. Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades’ development course and future prospect. In: Journal of cancer research and clinical oncology 146. Berlin: Springer. https://doi.org/10.1007/s00432-019-03098-5 Search in Google Scholar

Dimastromatteo J, Charles EJ, Laubach VE. Molecular imaging of pulmonary diseases. Respir Res. 2018 Jan 24;19(1):17. doi: 10.1186/s12931-018-0716-0. PMID: 29368614; PMCID: PMC5784614. Search in Google Scholar

Gonçalves WGE, Santos MHDPD, Lobato FMF, et al. Deep learning in gastric tissue diseases: A systematic review. BMJ Open Gastroenterol 7(1):1–11. https://doi.org/10.1136/bmjgast-2019-000371 Search in Google Scholar

Nahar VK, Allison FM, Brodell RT, et al. Skin cancer prevention practices among malignant melanoma survivors: a systematic review. J Cancer Res Clin Oncol 142(6):1273–1283. https://doi.org/10.1007/s00432-015-2086-z Search in Google Scholar

Pu J, Roos J, Yi CA, et al. Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 32(6), 452–462 (2008). Search in Google Scholar

Pu J, Zheng B, Leader JK, Gur D. An automated CT-based lung nodule detection scheme using geometric analysis of signed distance field. Med. Phys. 35(8), 3451–3461 (2008). Search in Google Scholar

Lathwal A, Kumar R, Arora C, Raghava GPS. Identification of prognostic biomarkers for major subtypes of non-small-cell lung cancer using genomic and clinical data. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-020-03318-3 Search in Google Scholar

Zhang G, Jiang S, Yang Z, et al. Automatic nodule detection for lung cancer in CT images: a review. Comput. Biol. Med. 2018;103:287–300. Search in Google Scholar

Osadebey M, Andersen HK, Waaler D, et al. Three-stage segmentation of lung region from CT images using deep neural networks. BMC Med Imaging 21, 112 (2021). https://doi.org/10.1186/s12880-021-00640-1 Search in Google Scholar

Carmo D, Ribeiro J, Dertkigil S, et al. A Systematic Review of Automated Segmentation Methods and Public Datasets for the Lung and its Lobes and Findings on Computed Tomography Images. Yearb Med Inform. 2022 Aug;31(1):277-295. doi: 10.1055/s-0042-1742517. Epub 2022 Dec 4. PMID: 36463886; PMCID: PMC9719778. Search in Google Scholar

Homayounieh F, Digumarthy S, Ebrahimian S, et al. An Artificial Intelligence–Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study. JAMA Netw Open. 2021;4(12):e2141096. doi:10.1001/jamanetworkopen.2021.41096 Search in Google Scholar

Song J, Yang C, Fan L, et al. Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Trans. Med. Imaging, 35 (1) (2015), pp. 337-353. Search in Google Scholar

Kahraman AT, Fröding T, Toumpanakis D, et al. Automated detection, segmentation and measurement of major vessels and the trachea in CT pulmonary angiography. Sci Rep 13, 18407 (2023). https://doi.org/10.1038/s41598-023-45509-1 Search in Google Scholar

Revel MP, et al. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 231, 453–458 (2004). Search in Google Scholar

Dongquan Liu, Shaojun Zhu, Bangquan Liu, et al. Improvement of CT Target Scanning Quality for Pulmonary Nodules by PDCA Management Method. Mathematical Problems in Engineering, vol. 2021, Article ID 6632960, 9 pages, 2021. https://doi.org/10.1155/2021/6632960 Search in Google Scholar

Lijia Zhi, Wujun Jiang, Shaomin Zhang, Tao Zhou. Deep neural network pulmonary nodule segmentation methods for CT images: Literature review and experimental comparisons. Computers in Biology and Medicine, Volume 164, 2023, 107321. https://doi.org/10.1016/j.compbiomed.2023.107321. Search in Google Scholar

Ho TT, Kim T, Kim WJ, et al. A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects. Sci Rep 11, 34 (2021). https://doi.org/10.1038/s41598-020-79336-5 Search in Google Scholar

Merjulah R, Chandra J. Segmentation technique for medical image processing: a survey. In: 2017 International Conference on Inventive Computing and Informatics (ICICI), pp. 1055–1061. IEEE (2017). Search in Google Scholar

Labaki WW, Han MK. Artificial intelligence and chest imaging. Will deep learning make us smarter? Am. J. Respir. Crit. Care Med. 197(2), 148–150 (2018). Search in Google Scholar

Alan Alexander, Adam Jiang, Cara Ferreira, Delphine Zurkiya, et al. An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging. Journal of the American College of Radiology, Volume 17, Issue 1, Part B, 2020, Pages 165-170. https://doi.org/10.1016/j.jacr.2019.07.019. Search in Google Scholar

Hwang EJ, Park S, Jin K, et al. Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Netw Open. 2019;2(3):e191095. doi:10.1001/jamanetworkopen.2019.1095 Search in Google Scholar

Meng X, Qiang Y, Zhu S, Fuhrman C, Siegfried JM, Pu J. Illustration of the obstacles in computerized lung segmentation using examples. Med Phys. 2012 Aug;39(8):4984-91. doi: 10.1118/1.4737023. PMID: 22894423; PMCID: PMC3416879. Search in Google Scholar

Choe J, Lee SM, Hwang HJ, et al. Artificial Intelligence in Lung Imaging. Semin Respir Crit Care Med. 2022 Dec;43(6):946-960. doi: 10.1055/s-0042-1755571. Epub 2022 Sep 29. PMID: 36174647. Search in Google Scholar

Hofmanninger, J., Prayer, F., Pan, J. et al. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp 4, 50 (2020). https://doi.org/10.1186/s41747-020-00173-2 Search in Google Scholar

Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer 18, 500–510 (2018). https://doi.org/10.1038/s41568-018-0016-5 Search in Google Scholar

Primakov SP, Ibrahim A, van Timmeren JE, et al. Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nat Commun 13, 3423 (2022). https://doi.org/10.1038/s41467-022-30841-3 Search in Google Scholar

Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric x-ray CT images. IEEE Trans. Med. Imaging 20(6), 490–498 (2001). Search in Google Scholar

Editah Patrick - The Role of Artificial Intelligence in Healthcare: Consumer Concerns and Ethical Considerations in Cryptopolitan www.msn.com/en-us/health/other/the-role-of-artificial-intelligence-in-healthcare-consumer-concerns-and-ethical-considerations/ar-AA1kUqXO site accessed in 5th of December 2023 Search in Google Scholar

Jonathan Herington, Melissa D. McCradden, Kathleen Creel, et al. Ethical Considerations for Artificial Intelligence in Medical Imaging: Deployment and Governance. Journal of Nuclear Medicine October 2023, 64 (10) 1509-1515; DOI: https://doi.org/10.2967/jnumed.123.266110. Search in Google Scholar

Kikinis R, Pieper SD, Vosburgh K (2014) 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support. Intraoperative Imaging and Image-Guided Therapy, edited by Ferenc A. Jolesz, vol. 3(19), pp. 277–289. ISBN: 978-1-4614-7656-6 (Print) 978-1-4614-7657-3 (Online). Search in Google Scholar

eISSN:
2247-059X
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Medicine, Clinical Medicine, other, Internal Medicine, Pneumology