1. bookVolume 46 (2021): Edition 341 (December 2021)
Détails du magazine
License
Format
Magazine
eISSN
2256-0939
Première parution
30 Aug 2012
Périodicité
2 fois par an
Langues
Anglais
access type Accès libre

Influence of Veneer Density on Plywood Thickness and Some Mechanical Properties

Publié en ligne: 22 Dec 2021
Volume & Edition: Volume 46 (2021) - Edition 341 (December 2021)
Pages: 66 - 74
Reçu: 29 Sep 2021
Accepté: 08 Nov 2021
Détails du magazine
License
Format
Magazine
eISSN
2256-0939
Première parution
30 Aug 2012
Périodicité
2 fois par an
Langues
Anglais
Abstract

It has been common knowledge that as the density of wood increases, the mechanical properties also improve. In turn, the density of wood depends on many factors, including the wood moisture content, location and cross-section in the trunk, the type of treatment and the parameters of technological processes. There is a great deal of research reported in the scientific literature on the effect of solid wood density on mechanical properties for different wood species as well as for structural timber. However, no research data can be found related investigation of the influence of veneer density on the properties of the birch plywood.

In the present study, researching the properties of 7-ply birch plywood (thickness 9 mm), it was concluded that as the density of veneers increases, the bending properties of plywood in the direction of wood fibers (covered veneers) increases. When determining the plywood gluing quality, similar tendencies have been observed. For plywood with a lower density in all veneer plies the gluing quality (tensile-shear test) for perpendicular wood fiber veneers increases in the direction from the symmetry axis or middle veneer to the plywood outer plies, which can be explained by the fact that the outer plies become denser at the time of the hot pressing process. The results of the study will allow birch plywood manufacturers in direct production, sort veneers by density, to produce plywood with very predictable gluing quality, plywood thickness and mechanical properties in bending.

Keywords

Aydin, I. and Colakoglu, G. (2008). Variations in bending strength and modulus of elasticity of spruce and alder plywood after steaming and high temperature drying. Mechanics of Advanced Materials and Structures. Volume 15, Issue 5, 371–374. DOI: 10.1080/1537649080197769210.1080/15376490801977692 Search in Google Scholar

Bekhta, P. and Marutzky, R. (2007). Reduction of glue consumption in the plywood production by using previously compressed veneer. European Journal of Wood and Wood Products. 65(1):87-88. DOI: 10.1007/s00107-006-0142-810.1007/s00107-006-0142-8 Search in Google Scholar

Bekhta, P., Proszyk, S., Krystofiak, T., Mamonova, M., Pinkowski, G. and Lis, B. (2014). Effect of thermomechanical densification on surface roughness of wood veneers. Wood Material Science and Engineering 9, 233–245. DOI: 10.1080/17480272.2014.92304210.1080/17480272.2014.923042 Search in Google Scholar

Cristescu, C., Sandberg, D., Ekevad, M. and Karlsson, O. (2015). Influence of pressing parameters on mechanical and physical properties of self-bonded laminated beech boards. Wood Material Science and Engineering 10, 205–214. DOI: 10.1080/17480272.2014.99970310.1080/17480272.2014.999703 Search in Google Scholar

Finnish forest industries federation. (2002). Handbook of Finnish Plywood. Lahti, Finland, Kirjapaino Markprint Oy., 68 pp. Search in Google Scholar

Forest-based Sector Technology Platform (2013). Horizons - Vision 2030 for the European Forest-based Sector Renewed FTP Vision 2030. Brussels, Belgium, 12 pp. Search in Google Scholar

Iejavs, J., Podnieks, M. and Uzuls, A. (2021). Some physical and mechanical properties of wood of Fast-growing tree species eucalyptus (Eucalyptus grandis) and radiata pine (Pinus radiata D.Don). Agronomy Research 19(2), 434–443. DOI: 10.15159/AR.21.038 Search in Google Scholar

Kallakas, H., Rohumaa, A., Vahermets, H. and Kers, K. (2020). Effect of Different Hardwood Species and Lay-Up Schemes on the Mechanical Properties of Plywood. Forests, 11, 649, DOI: 10.3390/f1106064910.3390/f11060649 Search in Google Scholar

Kinderevičs, K. (2019). The quality of the bonding of Birch plywood, depending on the changes in the technological regimes. Master Thesis. Latvia University of Life Sciences and Technologies, Jelgava, 83 pp. Search in Google Scholar

Kretschmann, D. E. and Cramer, S. M. (2007). The role of earlywood and latewood properties on dimensional stability of loblolly pine. Proceedings of the Compromised Wood Workshop, Wood Technology Research Centre, University of Canterbury, 215-236. Search in Google Scholar

Kretschmann, D. E. (2008). The influence of juvenile wood content on shear parallel, compression, and tension perpendicular to grain strength and mode I fracture toughness of loblolly pine at various ring orientation. Forest Products Journal. VOL. 58, No. 7/8, 89-96. Search in Google Scholar

Latvijas Finieris. (2020). Plywood handbook. Riga, Latvijas Finieris JSC, 106 pp. Search in Google Scholar

Li, H., Li, C., Chen, H., Zhang, D., Zhang, S. and Li, J. (2014). Effects of Hot-Pressing Parameters on Shear Strength of Plywood Bonded with Modified Soy Protein Adhesives. Bioresources, 9(4), 5858-5870, DOI: 10.15376/biores.9.4.5858-587010.15376/biores.9.4.5858-5870 Search in Google Scholar

Liepa, K. H. (2020). Influence of plywood pressing technological parameters on mechanical properties in static bending. Master Thesis. Latvia University of Life Sciences and Technologies, Jelgava, 70 pp. Search in Google Scholar

Lipinskis, I., Spulle, U. (2011). Research on mechanical properties of birch plywood with special veneer lay-up schemes. Drewno, Vol. 54, No 185, 109–118. Search in Google Scholar

Ministry of Agriculture Republic of Latvia (2021). Latvian Forest Sector in Facts & Figures 2021. Riga, NGO “Zaļās mājas”, 54 pp. Search in Google Scholar

Mirski, R., Dziurka, D., and Łęcka, J. (2010). Potential of shortening pressing time or reducing pressing temperature for plywood resinated with PF resin modified using alcohols and esters. European Journal of Wood and Wood Products 69, 2, 317-323. DOI: 10.1007/s00107-010-0436-810.1007/s00107-010-0436-8 Search in Google Scholar

Nawrot, M., Pazdrowski, W., Szymański, M., Jędraszak, A. (2012). Identification of juvenile and mature wood zones in stems of European larch (Larix Decidua Mill.) using a k-means algorithm. Wood Research 57 (4), 545–560. Search in Google Scholar

Popovska Jakimovska, V., Iliev, B., Zlateski, G. (2017). Impact of veneer layouts on plywood tensile strength. Drvna industrija 68(2), 153-161. DOI: 10.5552/DRIND.2017.163410.5552/drind.2017.1634 Search in Google Scholar

Rautkari, L., Kutnar, A., Hughes, M. and Kamke, F.A. (2015). Wood Surface Densification Using Different Methods. In Proceedings of the 11th World Conference on Timber Engineering, 3121–3125. Search in Google Scholar

Regattieri, A. and Bellomi, G. (2009). Innovative lay-up system in plywood manufacturing process. European Journal of Wood and Wood Products, European Journal of Wood and Wood Products No. 67, 55–62. DOI: 10.1007/s00107-008-0282-010.1007/s00107-008-0282-0 Search in Google Scholar

Shupe, T. F., Hse, C. Y., Grozdits, G. A. and Choong, E. T. (1997). Veneer Lay Up on Some Mechanical Properties of Loblolly Pine Plywood. Forest Products Journal. Vol. 47, No. 10, 101–106. Search in Google Scholar

Spulle, U. (2003). Bending Strength and Modulus of Elasticity of the Plywood. Master Thesis, Latvia University of Agriculture, Jelgava, 72 pp. Search in Google Scholar

Spulle, U., Buksans, E., Iejavs, J. and Rozins, R. (2018). Swelling Pressure and Form Stability of Cellular Wood Material. Agronomy Research 16(1), 263-275. DOI: 10.15159/AR.18.011 Search in Google Scholar

Standards Association of Latvia. (2001). European standard: Wood-based panels - determination of modulus of elasticity in bending and of bending strength. LVS EN 310. Riga. Search in Google Scholar

Standards Association of Latvia. (2005). European standard: Plywood - Bonding quality - Part 1: Test methods. LVS EN 314-1. Riga. Search in Google Scholar

Standards Association of Latvia. (2000). European standard: Plywood - Bonding quality - Part 2: Requirements. LVS EN 314-2. Riga. Search in Google Scholar

Standards Association of Latvia. (2000). European standard: Plywood - Tolerances for dimensions. LVS EN 315. Riga. Search in Google Scholar

Standards Association of Latvia. (1999). European standard: Wood-based panels - Determination of moisture content. LVS EN 322. Riga. Search in Google Scholar

Standards Association of Latvia. (2000). European standard: Wood-based panels - Determination of density. LVS EN 323. Riga. Search in Google Scholar

Thoemen, H., Irle M. and Sernek M. (2010). Wood-Based Panels: An Introduction for Specialists. Brunel University Press, 152 pp. Search in Google Scholar

Volynskii, В.Н. Tehnologia kleenyh materialov. (Technology of Glued Materials.), Arhangelxskii gosudarstvennyi tehniceskii universitet, Arhangelxsk, 2003. 280 с. (in Russian) Search in Google Scholar

Wang, B. J. and Dai, C. (2005). Hot-pressing stress graded aspen veneer for laminated veneer lumber (LVL). Holzforschung. Volume: 59, Issue 1, 10–17.10.1515/HF.2005.002 Search in Google Scholar

Zeppenfeld, G., Grunwald, D. (2005). Klebstoffe in der Holzund Möbelindustrie; 2. überarbeitete und erweiterte Auflage. KG, Leinfelden-Echterdingen, DRW-Verlag Weinbrenner GmbH & Co. 352 pp. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo