Accès libre

Biseasonal Changes in Aerobic Capacity and Sports Performance in Highly Trained Mountain Bike Cyclists Applying Elements of the Polarized Training Programme

À propos de cet article

Citez

Støren Ø., Bratland-Sanda S., Haave M., Helgerud J. (2012). Improved VO2max and time trial performance with more high aerobic intensity interval training and reduced tra-ining volume: a case study on an elite national cyclist. Journal of Strength and Conditioning Research 26(10), 2705-2711. DOI: 10.1519/JSC.0b013e318241deec Search in Google Scholar

Warnier G., Benoit N., Naslain D., Lambrecht S., Francaux M., Deldicque L. (2020). Effects of sprint interval training at different altitudes on cycling performance at sea-level. Sports 8(11), 148. DOI: 10.3390/sports8110148 Search in Google Scholar

Guellich A., Seiler S. (2010). Lactate profile changes in relation to training characteristics in junior elite cyclists. International Journal of Sports Physiology and Performance 5(3), 316-327. DOI: 10.1123/ijspp.5.3.316 Search in Google Scholar

Hawley J.A., Stepto N.K. (2001). Adaptations to training in endurance cyclists: implications for performance. Sports Medicine 31(7), 511-520. DOI: 10.2165/00007256-200131070-00006 Search in Google Scholar

Solli G.S., Tønnessen E., Sandbakk Ø. (2019). Block vs. traditional periodization of HIT: two different paths to success for the world’s best cross-country skier. Frontiers in Physiology 10, 375. DOI: 10.3389/fphys.2019.00375 Search in Google Scholar

Stöggl T., Sperlich B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology 5, 33. DOI: 10.3389/fphys.2014.00033 Search in Google Scholar

Rønnestad B.R., Hansen J., Ellefsen S. (2014). Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scandinavian Journal of Medicine & Science in Sports 24(1), 34-42. DOI: 10.1111/j.1600-0838.2012.01485.x Search in Google Scholar

Neal C.M., Hunter A.M., Brennan L., O’Sullivan A., Hamilton D. et al. (2013). Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of Applied Physiology 114(4), 461-471. DOI: 10.1152/japplphysiol.00652.2012 Search in Google Scholar

Rosenblat M.A., Perrotta A.S., Vicenzino B. (2019). Polarized vs. threshold training intensity distribution on endurance sport performance: A systematic review and meta-analysis of randomized controlled trials. Journal of Strength and Conditioning Research 33(12), 3491-3500. DOI: 10.1519/JSC.0000000000002618 Search in Google Scholar

Hebisz P., Hebisz R., Zatoń M., Ochmann B., Mielnik N. (2016). Concomitant application of sprint and high-intensity interval training on maximal oxygen uptake and work output in well-trained cyclists. European Journal of Applied Physiology 116(8), 1495-1502. DOI: 10.1007/s00421-016-3405-z Search in Google Scholar

Hebisz P., Hebisz R., Drelak M. (2021). Comparison of aerobic capacity changes as a result of a polarized or block training program among trained mountain bike cyclists. International Journal of Environmental Research and Public Health 18(16), 8865. DOI: 10.3390/ijerph18168865 Search in Google Scholar

Barnes K.R., Hopkins W.G., McGuigan M.R., Northuis M.E., Kilding A.E. (2013). Effects of resistance training on running economy and cross-country performance. Medicine & Science in Sports & Exercise 45(12), 2322-2331. DOI: 10.1249/MSS.0b013e31829af603 Search in Google Scholar

De Pauw K., Roelands B., Cheung S.S., de Geus B., Rietjens G., Meeusen R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance 8(2), 111-122. DOI: 10.1123/ij-spp. 8.2.111 Search in Google Scholar

Hebisz R., Hebisz P., Danek N., Michalik K., Zatoń M. (2022). Predicting changes in maximal oxygen uptake in response to polarized training (sprint interval training, high-intensity interval training, and endurance training) in mountain bike cyclists. Journal of Strength and Conditioning Research 36(6), 1726-1730. DOI: 10.1519/JSC.0000000000003619 Search in Google Scholar

Pallarés J.G., Morán-Navarro R., Ortega J.F., Fernández-Elías V.E., Mora-Rodriguez R. (2016). Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS One 11(9), e0163389. DOI: 10.1371/journal.pone.0163389 Search in Google Scholar

de Koning J.J., Noordhof D.A., Lucia A., Foster C. (2012). Factors affecting gross efficiency in cycling. International Journal of Sports Medicine 33(11), 880-885. DOI: 10.1055/s 0032-1306285 Search in Google Scholar

Matomäki P., Linnamo V., Kyröläinen H. (2019). A comparison of methodological approaches to measuring cycling mechanical efficiency. Sports Medicine – Open 5(1), 23. DOI: 10.1186/s40798-019-0196-x Search in Google Scholar

Schaun G.Z. (2017). The maximal oxygen uptake verification phase: a light at the end of the tunnel? Sports Medicine – Open 3(1), 44. DOI: 10.1186/s40798-017-0112-1 Search in Google Scholar

Hebisz P., Hebisz R., Jastrzębska A. (2021). An attempt to predict changes in heart rate variability in the training intensification process among cyclists. International Journal of Environmental Research and Public Health 18(14), 7636. DOI: 10.3390/ijerph18147636 Search in Google Scholar

Astorino T.A., Allen R.P., Roberson D.W., Jurancich M. (2012). Effect of high-intensity interval training on cardio-vascular function, VO2max, and muscular force. Journal of Strength and Conditioning Research 26(1), 138-145. DOI: 10.1519/JSC.0b013e318218dd77 Search in Google Scholar

McKenna M.J., Heigenhauser G.J., McKelvie R.S., Obminski G., MacDougall D., Jones L. (1997). Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. The Journal of Physiology 501(3), 703-716. DOI: 10.1111/j.1469-7793.1997.703bm.x Search in Google Scholar

LoMauro A., Aliverti A. (2018). Sex differences in respiratory function. Breathe 14(2), 131-140. DOI: 10.1183/20734735.000318 Search in Google Scholar

Impellizzeri F.M., Rampinini E., Sassi A., Mognoni P., Marcora S. (2005). Physiological correlates to off-road cycling performance. Journal of Sports Sciences 23(1), 41-47. DOI: 10.1080/02640410410001730061 Search in Google Scholar

Płoszczyca K., Foltyn J., Goliniewski J., Krężelok J., Poprzęcki S. et al. (2019). Seasonal changes in gross efficiency and aerobic capacity in well-trained road cyclists. Isokinetics and Exercise Science 27(3), 193-202. DOI: 10.3233/IES 192115 Search in Google Scholar

Sassi A., Impellizzeri F.M., Morelli A., Menaspà P., Rampinini E. (2008). Seasonal changes in aerobic fitness indices in elite cyclists. Applied Physiology, Nutrition, and Metabolism 33(4), 735-742. DOI: 10.1139/H08-046 Search in Google Scholar

Paton C.D., Hopkins W.G. (2005). Seasonal changes in power of competitive cyclists: implications for monitoring performance. Journal of Science and Medicine in Sport 8(4), 375-381. DOI: 10.1016/s1440-2440(05)80052-0 Search in Google Scholar

Sial S., Coggan A.R., Hickner R.C., Klein S. (1998). Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. American Journal of Physiology 274(5), 785-790. DOI: 10.1152/ajpen-do. 1998.274.5.E785 Search in Google Scholar

Bircher S., Knechtle B. (2004). Relationship between fat oxidation and lactate threshold in athletes and obese women and men. Journal of Sports Science and Medicine 3(3), 174-181. Search in Google Scholar

Ramos-Jiménez A., Hernández-Torres R.P., Torres-Durán P.V., Romero-Gonzalez J., Mascher D. et al. (2008). The respiratory exchange ratio is associated with fitness indicators both in trained and untrained men: a possible application for people with reduced exercise tolerance. Clinical Medicine: Circulatory, Respiratory and Pulmonary Medicine 2, 1-9. DOI: 10.4137/ccrpm.s449 Search in Google Scholar

Vikmoen O., Ellefsen S., Trøen Ø., Hollan I., Hanestadhaugen M. et al. (2016). Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Scandinavian Journal of Medicine & Science in Sports 26(4), 384-396. DOI: 10.1111/sms.12468 Search in Google Scholar

Rabinowitz J.D., Enerbäck S. (2020). Lactate: the ugly duckling of energy metabolism. Nature Metabolism 2(7), 566-571. DOI: 10.1038/s42255-020-0243-4 Search in Google Scholar

Evertsen F., Medbø J.I., Bonen A. (2001). Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers. Acta Physiologica Scandinavica 173(2), 195-205. DOI: 10.1046/j.1365-201X.2001.00871.x Search in Google Scholar

Juel C., Holten M.K., Dela F. (2004). Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. The Journal of Physiology 556(1), 297-304. DOI: 10.1113/jphysiol.2003.058222 Search in Google Scholar

Edge J., Bishop D., Goodman C. (2006). The effects of training intensity on muscle buffer capacity in females. European Journal of Applied Physiology 96(1), 97-105. DOI: 10.1007/s00421-005-0068-6 Search in Google Scholar

Hopkins W.G., Hawley J.A., Burke L.M. (1999). Design and analysis of research on sport performance enhancement. Medicine & Science in Sports & Exercise 31(3), 472-485. DOI: 10.1097/00005768-199903000-00018 Search in Google Scholar

Granier C., Abbiss C.R., Aubry A., Vauchez Y., Dorel S. et al. (2018). Power output and pacing during international cross-country mountain bike cycling. International Journal of Sports Physiology and Performance 13(9), 1243-1249. DOI: 10.1123/ijspp.2017-0516 Search in Google Scholar

Arriel R.A., Souza H.L., Sasaki J.E., Marocolo M. (2022). Current perspectives of cross-country mountain biking: physiological and mechanical aspects, evolution of bikes, accidents and injuries. International Journal of Environmental Research and Public Health 19(19), 12552. DOI: 10.3390/ijerph191912552 Search in Google Scholar

Muñoz I., Cejuela R., Seiler S., Larumbe E., Esteve-Lanao J. (2014). Training-intensity distribution during an ironman season: relationship with competition performance. International Journal of Sports Physiology and Performance 9(2), 332-339. DOI: 10.1123/ijspp.2012-0352 Search in Google Scholar

Muñoz I., Seiler S., Bautista J., España J., Larumbe E., Esteve-Lanao J. (2014). Does polarized training improve performance in recreational runners? International Journal of Sports Physiology and Performance 9(2), 265-272. DOI: 10.1123/ijspp.2012-0350 Submitted: 13 June, 2024 Accepted: 23 July, 2024 Search in Google Scholar

eISSN:
2082-8799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Public Health, Sports and Recreation, other