1. bookVolume 29 (2022): Edition 2 (June 2022)
Détails du magazine
License
Format
Magazine
eISSN
2082-8799
Première parution
16 May 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Effects of Simultaneously Combined Whole-Body Electrostimulation and Plyometric Training on Vertical Jump Performance, 20 m Sprint-Time and Handgrip Strength

Publié en ligne: 27 Jun 2022
Volume & Edition: Volume 29 (2022) - Edition 2 (June 2022)
Pages: 30 - 35
Reçu: 08 Jan 2022
Accepté: 21 Mar 2022
Détails du magazine
License
Format
Magazine
eISSN
2082-8799
Première parution
16 May 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

Introduction. The aim of the present study was to investigate the effects of a 6-week low intensity plyometric training (PT) + whole-body electrostimulation (WBES) combined program, compared with traditional PT, on vertical jump performance, 20 m sprint-time and handgrip strength.

Material and methods. 10 male and 10 female Physical Education students were randomly allocated to a control (CON) or an experimental (EXP) group. Both groups performed a 6-week low intensity PT 3 days per week, and during the third day, PT was simultaneously combined with WBES in the EXP group. Countermovement jump (CMJ) height, CMJ peak power, 20 m sprint-time and handgrip strength were measured before (pre-test) and after (post-test) the training period. Repeated measures ANOVA was performed to identify differences after the training program. Effect sizes (ES) were assessed using Hedge’s g.

Results. No significant differences between groups were observed at post-test. CMJ height and CMJ peak power significantly increased in both groups, with greater ES in the EXP group (p < 0.001, g = 0.68; p < 0.001, g = 0.70, respectively). 20 m sprint-time significantly improved in both groups, with greater ES in the CON group (p < 0.001, g = −1.68). Handgrip strength also increased in both groups, but ES were minimal.

Conclusions. Both training methods demonstrated to be a good strategy to improve CMJ performance and 20 m sprint-time. The most effective training method for improving CMJ performance was PT + WBES combined program, and traditional PT obtained better results in 20 m sprint-time.

Keywords

1. Radcliffe J., Farentinos R. (2015). High-Powered Plyometrics. Second Edition. Champaign: Human Kinetics. Search in Google Scholar

2. Verkhoshansky Y., Stiff M.C. (2009). Supertraining. Sixth Edition: expanded version. Rome: Verkhoshansky SSTM. Search in Google Scholar

3. Çimenli O., Koç H., Çimenli F., Kacoglu C. (2016). Effect of an eight-week plyometric training on different surfaces on the jumping performance of male volleyball players. Journal of Physical Education and Sport 16(1), 162-169. DOI: 10.7752/jpes.2016.01026 Ouvrir le DOISearch in Google Scholar

4. Markovic G., Jukic I., Milanovic D., Meticos D. (2007). Effects of sprint and plyometric training on muscle function and athletic performance. Journal of Strength & Conditioning Research 21(2), 543-549. DOI: 10.1519/R-19535.117530960 Ouvrir le DOISearch in Google Scholar

5. Jastrzebski Z., Wnorowski K., Mikolajewski R., Jaskulska E., Radziminski L. (2014). The effect of a 6-week plyometric training on explosive power in volleyball players. Baltic Journal of Health and Physical Activity 6(2), 79-89. DOI: 10.2478/bjha-2014-0008 Ouvrir le DOISearch in Google Scholar

6. Czaplicki A., Śliwa M., Szyszka P., Sadowski J. (2017). Biomechanical assessment of strength and jumping ability in male volleyball players during the annual training macrocycle. Polish Journal of Sport and Tourism 22(4), 221-227. DOI: 10.1515/pjst-2017-0021 Ouvrir le DOISearch in Google Scholar

7. Pereira A., Costa A.M., Santos P., Figuereido T., João P.V. (2015). Training strategy of explosive strength in young female volleyball players. Medicina 51(2), 126-131. DOI: 10.1016/j.medici.2015.03.00425975882 Ouvrir le DOISearch in Google Scholar

8. Rojano D., Berral-Aguilar A.J., Berral F.J. (2021). Kinetics and vertical stiffness of female volleyball players: Effect of low-intensity plyometric training. Research Quarterly for Exercise and Sport. Online ahead of print. DOI: 10.1080/02701367.2021.1915946.34709134 Ouvrir le DOISearch in Google Scholar

9. Filipovic A., Kleinöder H., Dörmann U., Mester J. (2012). Electromyostimulation – A systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. Journal of Strength & Conditioning Research 26(9), 2600-2614. DOI: 10.1519/JSC.0b013e31823f2cd122067247 Ouvrir le DOISearch in Google Scholar

10. Maffiuletti N.A., Cometti G., Amiridis I.G., Martin A., Pousson M., Chatard J.C. (2000). The effects of electro-myostimulation training and basketball practice on muscle strength and jumping ability. International Journal of Sports Medicine 21(6), 437-443. DOI: 10.1055/s-2000-383710961520 Ouvrir le DOISearch in Google Scholar

11. Gregory C.M., Bickel S. (2005). Recruitment patterns in human skeletal muscle during electrical stimulation. Physical Therapy 85(4), 358-364. DOI: 10.1093/ptj/85.4.358 Ouvrir le DOISearch in Google Scholar

12. Lake D. (1992). Neuromuscular electrical stimulation. Sports Medicine 13, 320-336. DOI: 10.2165/00007256-199213050-000031565927 Ouvrir le DOISearch in Google Scholar

13. Babault N., Cometti G., Bernardin M., Pousson M., Chatard J. (2007). Effects of electromyostimulation training on muscle strength and power of elite rugby players. Journal of Strength & Conditioning Research 21(2), 431-437. DOI: 10.1519/R-19365.117530954 Ouvrir le DOISearch in Google Scholar

14. Brocherie F., Babault N., Cometti G., Maffiuletti N., Chatard J.C. (2005). Electrostimulation training effects on the physical performance of ice hockey players. Medicine and Science in Sports and Exercise 37(3), 455-460. DOI: 10.1249/01.mss.0000155396.51293.9f15741845 Ouvrir le DOISearch in Google Scholar

15. Jubeau M., Zory R., Gondin J., Martin A., Maffiuletti N.A. (2006). Late neuronal adaptations to electrical stimulation resistance training of the plantar flexor muscle. European Journal of Applied Physiology 98(2), 202-211. DOI: 10.1007/s00421-006-0264-z16944193 Ouvrir le DOISearch in Google Scholar

16. Micke F., Kleinöder H., Dörmann U., Wirtz N., Donath L. (2018). Effects of an eight-week superimposed submaximal dynamic whole-body electromyostimulation training on strength and power parameters of the leg muscles: a randomized controlled intervention study. Frontiers in Physiology 9, 1719. DOI: 10.3389/fphys.2018.01719629005730568596 Ouvrir le DOISearch in Google Scholar

17. Cormie P., McGuigan M.R., Newton R.U. (2011). Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Medicine 41(2), 125-146. DOI: 10.2165/11538500-000000000-0000021244105 Ouvrir le DOISearch in Google Scholar

18. Paillard T., Noé F., Passelergue P., Dupui P. (2005). Electrical stimulation superimposed onto voluntary muscular contraction. Sports Medicine 35, 951-966. DOI: 10.2165/00007256-200535110-0000316271009 Ouvrir le DOISearch in Google Scholar

19. Martínez-López E.J., Benito-Martínez E., Hita-Contreras F., Lara-Sánchez A., Martínez-Amat A. (2012). Effects of electrostimulation and plyometric training program combination on jump height in teenage athletes. Journal of Sports Science and Medicine 11(4), 727-735. Search in Google Scholar

20. Benito-Martínez E., Lara-Sánchez A.J., Berdejo-del Fresno D., Martínez-López E.J. (2011). Effects of combined electro-stimulation and plyometric training on vertical jump and speed tests. Journal of Human Sport & Exercise 6(4), 603-615. DOI: 10.4100/jhse.2011.64.04 Ouvrir le DOISearch in Google Scholar

21. Benito-Martínez E., Martínez-Amat A., Lara-Sánchez A.J., Berdejo-del Fresno D., Martínez-López E.J. (2013). Effect of combined electrostimulation and plyometric training on 30 meters dash and triple jump. Journal of Sports Medicine and Physical Fitness 53(4), 387-395. Search in Google Scholar

22. Kemmler W., Weissenfels A., Willert S., Shojaa M., Stengel S., Filipovic A. et al. (2018). Efficacy and safety of low frequency whole-body electromyostimulation (WB-EMS) to improve health-related outcomes in non-athletic adults. A systematic review. Frontiers in Physiology 9, 573. DOI: 10.3389/fphys.2018.00573597450629875684 Ouvrir le DOISearch in Google Scholar

23. Gale C.R., Martyn C.N., Cooper C., Sayer A.A. (2007). Grip strength, body composition, and mortality. International Journal of Epidemiology 36(1), 228-235. DOI: 10.1093/ije/dyl22417056604 Ouvrir le DOISearch in Google Scholar

24. Norman K., Stobäus N., González M.C., Schulzke J.D., Pirlich M. (2011). Hand grip strength: Outcome predictor and marker of nutritional status. Clinical Nutrition 30(2), 135-142. DOI: 10.1016/j.clnu.2010.09.01021035927 Ouvrir le DOISearch in Google Scholar

25. Wind A.E., Takken T., Helders P.M., Engelbert R.H. (2010). Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? European Journal of Pediatrics 169(3), 281-287. DOI: 10.1007/s00431-009-1010-419526369 Ouvrir le DOISearch in Google Scholar

26. De Beliso M., Boham M., Harris C., Carson C., Berning J.M., Sevene T. et al. (2015). Grip strength and functional measures in the mature adult: Brief report II. International Journal of Science and Engineering Investigations 4(39), 1-4. Search in Google Scholar

27. Haynes E., De Beliso M. (2019). The relationship between CrossFit performance and grip strength. Turkish Journal of Kinesiology 5(1), 15-21. DOI: 10.31459/turkjkin.515874 Ouvrir le DOISearch in Google Scholar

28. Alshdokhi K.A., Petersen K.J., Clarke J.C. (2020). Effect of 8 weeks of grip strength training on adolescent sprint swimming: a randomized controlled trial. Exercise Medicine 4(1), 1-5. DOI: 10.26644/em.2020.001 Ouvrir le DOISearch in Google Scholar

29. Matsudo V.K., Matsudo S., Machado de Rezende L., Raso V. (2015). Handgrip strength as a predictor of physical fitness in children and adolescents. Revista Brasileira de Cineantropometria e Desempenho Humano 17(1), 1-10. DOI: 10.5007/1980-0037.2015v17n1p1 Ouvrir le DOISearch in Google Scholar

30. Vaydia S.M., Nariya D.M. (2021). Handgrip strength as a predictor of muscular strength and endurance: A cross-sectional study. Journal of Clinical and Diagnostic Research 15(1), 1-4. DOI: 10.7860/JCDR/2021/45573.14437 Ouvrir le DOISearch in Google Scholar

31. Koley S., Kaur A. (2017). Estimation of handgrip strength and its correlations with selected anthropometric variables and performance tests in Indian inter-university female field hockey players. Archives of Sports Medicine and Physiotherapy 2(1), 1-4. DOI: 10.17352/asmp.000003 Ouvrir le DOISearch in Google Scholar

32. Mbada C.E., Quadri S.A., Oghumu S.N., Israel K.O., Fasuyi F., Oyewole A.I. (2020). Handgrip strength, leg explosive power and vertical jump performance among Nigerian university male basketball players and healthy controls. Medicina Sportiva 16(1), 3156-3162. Search in Google Scholar

33. Ramírez-Campillo R., Abad-Colil F., Vera M., Andrade D.C., Caniuqueo A., Martínez-Salazar C. et al. (2016). Men and women exhibit similar acute hypotensive responses after low, moderate or high-intensity plyometric training. Journal of Strength and Conditioning Research 30(1), 93-101. DOI: 10.1519/JSC.000000000000106826691407 Ouvrir le DOISearch in Google Scholar

34. Sugisaki N., Okada J., Kanehisa H. (2013). Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints. Journal of Sports Science 31(8), 894-906. DOI: 10.1080/02640414.2012.75734223327555 Ouvrir le DOISearch in Google Scholar

35. Herrero A.J., Martín J., Martín T., Abadía O., Fernández B., García-López D. (2010). Short-term effect of strength training with and without superimposed electrical stimulation on muscle strength and anaerobic performance. A randomized controlled trial. Part I. Journal of Strength & Conditioning Research 24(6), 1609-1615. DOI: 10.1519/JSC.0b013e3181dc427e20508466 Ouvrir le DOISearch in Google Scholar

36. Sayers S.P., Harackiewicz D.V., Harman E.A., Frykman P.N., Rosenstein M.T. (1999). Cross-validation of three jump power equations. Medicine & Science in Sports & Exercise 31(4), 572-577. DOI: 10.1097/00005768-199904000-0001310211854 Ouvrir le DOISearch in Google Scholar

37. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Second Edition. New York: Hillsdate. Search in Google Scholar

38. Vassil K., Bazanovk B. (2012). The effect of plyometric training program on young volleyball players in their usual training period. Journal of Human Sport and Exercise 7, 34-40. DOI: 10.4100/jhse.2012.7.Proc1.05 Ouvrir le DOISearch in Google Scholar

39. Ward A., Shkuratova N. (2002). Russian electrical stimulation: The early experiments. Physical Therapy 82(10), 1019-1030. DOI: 10.1093/PTJ/82.10.1019 Ouvrir le DOISearch in Google Scholar

40. Merino-Muñoz P., Vidal-Maturana F., Aedo-Muñoz E., Villaseca-Vicuña R., Pérez-Contreras J. (2021). Relationship between vertical jump, linear sprint and change of direction in Chilean female soccer players. Journal of Physical Education and Sport 21(5), 2737-2744. DOI: 10.7752/jpes.2021.05364 Ouvrir le DOISearch in Google Scholar

41. McFarland I.T., Dawes J.J., Elder C.L., Lockie R.G. (2016). Relationship of two vertical jumping tests to sprint and change of direction speed among male and female collegiate soccer players. Sports 4(11), 1-7. DOI: 10.3390/sports4010011 Ouvrir le DOISearch in Google Scholar

42. Malatesta D., Cattaneo F., Dugnani S., Maffiuletti N.A. (2003). Effects of electromyostimulation training and volleyball practice on jumping ability. Journal of Strength and Conditioning Research 17(3), 573-579. DOI: 10.1519/1533-4287(2003)017<0573:eoetav>2.0.co;2 Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo